
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS308 SOFTWARE ENGINEERING AND PROJECT MANAGEMENT

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, Web

Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by

learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

Free Hand

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

CSE DEPARTMENT, NCERC PAMPADY Page 4

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

CO1
To Analyze a problem, define and identify the computing requirements appropriate to its

solution using software life cycle models.

CO2
To understand various process models and identify phases of software development.

CO3
To apply the planning phase and translate a requirement specification to a design using an

appropriate software engineering methodology.

CO4
To demonstrate various coding standards and appropriate testing strategy for the given

software system.

CO5
To apply different maintenance process and risk management activities.

CO6
To develop software projects based on current technology by managing resources

economically and keeping ethical values.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

CO1 3 3 3 - - 3 - - 2 2 - 3

CO2 2 3 - - - - - - 3 - - -

CO3 - - 3 3 3 3 - - - - 3 -

CO4 3 - 3 - 3 - - - 3 - - -

CO5 - - - 3 3 - - - - - 2 -

CO6 - - 3 3 3 3 - - - 3 3 3

CSE DEPARTMENT, NCERC PAMPADY Page 5

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PSO

1

PSO

2

PSO

3

CO1 3 - -

CO2 3 - -

CO3 - 3 -

CO4 - - 3

CO5 3 - -

CO6 - - 3

•

6

SYLLABUS

•

7

•

8

•

9

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Explain the concept of software

engineering?

CO1 K2 17

2 Differentiate between waterfall model and

spiral model.

CO1 K4 31,36

3 Describe the incremental model of

software development.

CO1 K2 35

4 What is meant by prototyping model?

CO1 K1 33

5 Explain the layered technology of software

engineering.

CO1 K2 26

6 How does the maintenance aspect of

software engineering changed over the

period of time?

CO1 K3 23

7 Why the historical aspects still faces issues

in scope of software engineering?

CO1 K3 22

8 Briefly describe the scope of software

engineering.

CO1 K2 22

9 What are basic characteristics of good

software?

CO1 K2 19

10 Illustrate the need of software engineering

in the society.

CO1 K3 19

•

10

MODULE II

1 Briefly explain the process framework in

software engineering?

CO2 K6 38

2 Briefly describe software prototyping.

CO2 K2 57

3 List out the different analysis principles

involved in elicitation.

CO2 K4 56

4 Explain the concept of ethnography.

CO2 K2 55

5 What makes use case diagram a

representation for elicitation?

CO2 K3 54

6 Write short notes on process activities in

requirement elicitation and analysis.

CO2 K6 49

7 Describe the phases of Software

Development Life Cycle.

CO2 K2 45

8 Explain the ISO 9000 standard.

CO2 K6 43

9 How the Capability Maturity Model helps

large organization?

CO2 K3 40

10 Illustrate the framework models mainly

used.

CO2 K3 38

•

11

MODULE III

1 Describe about detailed COCOMO model.

CO3 K2 67

2 Differentiate between top down and

bottom up approaches.

CO3 K4 90,91

3 Write note on the concept of Effective

Modular Design.

CO3 K6 86

4 Explain the quality attributes in design.

CO3 K5 78

5 Differentiate between basic and

intermediate COCOMO model.

CO3 K4 68,69

6 Write note on different design concepts.

CO3 K6 80

7 Write notes on resources.

CO3 K3 66

8 Explain about staffing and project

planning.

CO3 K5 73

9 Write notes on the characteristics and

guidelines for a good design.

CO3 K2 77

10 Explain the staffing activities for a

software project.

CO3 K2 75

•

12

MODULE IV

1 Write notes on (a) Memory Leaks, (b)

NULL dereferencing and (c)

Synchronization errors.

CO4 K6 95,96

2 Briefly describe about testing objectives

and testing principles.

CO4 K2 103

3 Describe briefly about integration testing

along with its various strategies.

CO4 K2 113

4 Write note on system testing.

CO4 K3 117

5 Explain any five programming practice

methods

CO4 K5 98

6 Explain alpha-beta testing in detail.

CO4 K5 116

7 Write short note on coding standards.

CO4 K3 101

8 Write notes on programming practices.

CO4 K6 98

9 Explain briefly about common coding

errors.

CO4 K2 94

10 Explain the different techniques involved

in black-box testing

CO4 K5 104

11 Explain black box testing listing its

advantages and disadvantages.

CO4 K5 103

•

13

12 Explain about white box testing.

CO4 K5 109

MODULE V

1 Point out the different types of

maintenance.

CO5 K4 121

2 Write note on project concept in project

management.

CO5 K6 142

3 Briefly describe the five part common

sense approach to software project.

CO5 K2 144

4 Explain the importance of people in 4P’s

of project management.

CO5 K5 133

5 Write note on risk mitigation, monitoring

and management.

CO5 K3 130

6 Explain the concept of melding product

and process.

CO5 K2 139

7 Write note on process decomposition.

CO5 K3 141

8 Differentiate between the concept of

product and process.

CO5 K4 137, 139

9 Explain the concept of people in project

management.

CO5 K2 133

10 Point out the categories of players in

project management.

CO5 K4 133

•

14

11 Explain about the different maintenance

activities.

CO5 K2 121

12 Explain different categories of software

risks.

CO5 K2 125

MODULE VI

1 Point out the different integration and

testing tools

CO6 K4 163

2 Point out the root causes of late delivery of

software products.

CO6 K4 145

3 Briefly describe the building blocks of

CASE.

CO6 K2 158

4 Explain the golden rules of user interface

design.

CO6 K5 153

5 Write note on (a) relationship between

people and effort and (b) defining a task set

for software project.

CO6 K3 147, 148

6 Explain briefly about taxonomy of CASE

tools.

CO6 K5 159

7 Describe the basic principles that guide

software project scheduling

CO6 K2 145

•

15

8 Write notes on (a) Software configuration

management tools (b) reengineering tools.

CO6 K3 162, 164

9 Explain the concept of make the interface

inconsistent.

CO6 K2 156

10 Write note on CASE tools

CO6 K6 157

11 Define SCM with its elements.

CO6 K1 151

12 Differentiate between the concepts place

the user in control and reduce the user’s

memory load.

CO6 K4 154, 155

•

16

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Top ten automated software testing tools 166

•

17

MODULE 1

1.1 INRTODUCTION

 Software is more than just a program code. A program is an executable code,

which serves some computational purpose.

 Software is considered to be a collection of executable programming code,

associated libraries and documentations. Software, when made for a specific

requirement is called software product.

 Engineering on the other hand, is all about developing products, using well-

defined, scientific principles and methods.

 So, we can define software engineering as an engineering branch associated

with the development of software product using well-defined scientific

principles, methods and procedures.

 The outcome of software engineering is an efficient and reliable software

product.

 IEEE defines software engineering as:

The application of a systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software.

 Without using software engineering principles it would be difficult to develop

large programs.

 In industry it is usually needed to develop large programs to accommodate

multiple functions. A problem with developing such large commercial

programs is that the complexity and difficulty levels of the programs increase

exponentially with their sizes.

•

18

 Software engineering helps to reduce this programming complexity. Software

engineering principles use two important techniques to reduce problem

complexity: abstraction and decomposition.

 The principle of abstraction implies that a problem can be simplified by

omitting irrelevant details. In other words, the main purpose of abstraction is

to consider only those aspects of the problem that are relevant for certain

purpose and suppress other aspects that are not relevant for the given purpose.

 Once the simpler problem is solved, then the omitted details can be taken into

consideration to solve the next lower level abstraction, and so on. Abstraction

is a powerful way of reducing the complexity of the problem.

 The other approach to tackle problem complexity is decomposition. In this

technique, a complex problem is divided into several smaller problems and

then the smaller problems are solved one by one.

 However, in this technique any random decomposition of a problem into

smaller parts will not help.

 The problem has to be decomposed such that each component of the

decomposed problem can be solved independently and then the solution of the

different components can be combined to get the full solution.

 A good decomposition of a problem should minimize interactions among

various components.

 If the different subcomponents are interrelated, then the different components

cannot be solved separately and the desired reduction in complexity will not

be realized.

•

19

1.1.1 Need of Software Engineering

The need of software engineering arises because of higher rate of change in

user requirements and environment on which the software is working.

 Large software - It is easier to build a wall than to a house or building,

likewise, as the size of software become large engineering has to step to give

it a scientific process.

 Scalability- If the software process were not based on scientific and

engineering concepts, it would be easier to re-create new software than to

scale an existing one.

 Cost- As hardware industry has shown its skills and huge manufacturing has

lower down the price of computer and electronic hardware. But the cost of

software remains high if proper process is not adapted.

 Dynamic Nature- The always growing and adapting nature of software

hugely depends upon the environment in which the user works. If the nature

of software is always changing, new enhancements need to be done in the

existing one. This is where software engineering plays a good role.

 Quality Management- Better process of software development provides

better and quality software product.

1.1.2 Characteristics of Good Software

A software product can be judged by what it offers and how well it can be

used. This software must satisfy on the following grounds:

 Operational

•

20

 Transitional

 Maintenance

Operational

This tells us how well software works in operations. It can be measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional

This aspect is important when the software is moved from one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability

Maintenance

This aspect briefs about how well a software has the capabilities to maintain itself in

the ever-changing environment:

 Modularity

 Maintainability

•

21

 Flexibility

 Scalability

1.1.3Three parties are involved in software engineering:

i. Client: The client is the individual who wants a product to be

built (developed).

ii. Developers: The developers are the members of a team

responsible for building that product.

iii. User: The user is the person or persons on whose behalf the

client has commissioned the product and who will utilize the

software.

1.1.4Types of software:

(a) Based on parties relationship:

i. Internal Software: Both the client and developers may

be part of the same organization.

ii. Contract Software: The client and developers are

members of totally independent organizations.

•

22

(b) Based on the functionality:

i. Custom software: It is written for one client.

ii. Commercial off-the-shelf (COTS) software: It has multiple

copies and the copies are sold at much lower prices to a large

number of buyers. It is developed for “the market”.

iii. Open-source software: It is developed and maintained by a

team of volunteers and may be downloaded and used free of

charge by anyone.

1.2 SCOPE OF SOFTWARE ENGINEERING:

The scope of software engineering is extremely broad. In general, five aspects

are involved:

 Historical Aspects

 Economic Aspects

 Maintenance Aspects

 Requirements, Analysis, and Design Aspects

 Team Development Aspects

1.2.1 Historical aspects:

 Software engineering cannot be considered as engineered since an

unacceptably large proportion of software products still are being:

o Delivered late

o Over budget

o With residual faults.

•

23

 Solution: A software engineer has to acquire a broad range of skills, both

technical and managerial. These skills have to be applied to: Programming;

and Every step of software production, from requirements to post_delivery

maintenance.

1.2.2 Economic Aspects:

 Applying economic principles to software engineering requires the client to

choose techniques that reduce long-term costs in terms of the economic sense.

 The cost of introducing new technology into an organization includes:

o Training cost

o A steep learning curve

o Unable to do productive work when attending the class.

1.2.3 Maintenance Aspects:

 Classical View of Maintenance:

 Development-then-maintenance model.

 But this model is unrealistic due to:

o During the development, the client’s requirements may change. This leads to

the changes in the specification and design.

o Developers try to reuse parts of existing software products in the software

product to be constructed.

 Modern view of Maintenance: It is the process that occurs when “software

undergoes modifications to code and associated documentation due to a

problem or the need for improvement or adaptation”.

•

24

 That is, maintenance occurs whenever a fault is fixed or the requirements

change, irrespective of whether this takes place before or after installation of

the product,

 Classical Postdelivery Maintenance: All changes to the product once the

product has been delivered and installed on the client’s computer and passes

its acceptance test.

 Modern Maintenance (or just maintenance): Corrective, perfective, or

adaptive activities performed at any time.

 Classical postdelivery maintenance is asubset of modern maintenance.

 A major aspect of software engineering consists of techniques, tools, and

practices that lead to a reduction in postdelivery maintenance cost.

 The importance of Postdelivery Maintenance:

 A software product is a model of the real world, and the real world is

perpetually changing.

 As a consequence, software has to be maintained constantly for it to

remain an accurate reflection of the real world.

1.2.4 Team Development Aspects:

 Team development leads to interface problems among code components and

communication problems among team members.

•

25

 Unless the team is properly organized, an inordinate amount of time can be

wasted in conferences between team members.

 It also includes human aspects, such as team organization, economic aspects,

and legal aspects, such as copyright law.

1.2.5 Requirements, Analysis and Design Aspects:

 The earlier we correct a fault, the better. That is, the cost of correcting a

fault increases steeply since it is directly related to what has to be done to

correct a fault.

 If the mistake is made while eliciting the requirements, the resulting fault

will probably also appear in the specifications, the design, and the code.

 It is crucial to check that making the change has not created a new problem

elsewhere in the product. All the relevant documentation, including

manuals, needs to be updated.

 The corrected product must be delivered and reinstalled.

•

26

1.3 SOFTWARE ENGINEERING: A LAYERED TECHNOLOGY

 The software engineering can be divided into 4 layers:

Fig: Layered technology of Software Engineering

1. A quality Process :

o Any engineering approach must rest on an quality.

o The "Bed Rock" that supports software Engineering is QualityFocus.

2. Process :

o Foundation for Software Engineering is the Process Layer

o Software Engineering process is the GLUE that holds all the technology

layers together and enables the timely development of computer software.

o It forms the base for management control of software project.

•

27

3. Methods:

o Software Engineering methods provide the "Technical Questions" for

building Software.

o Methods contain a broad array of tasks that include communication

requirement analysis, design modeling, program construction testing and

support.

4. Tools:

o Software engineering tools provide automated or semi-automated support for

the "Process" and the "Methods".

o Tools are integrated so that information created by one tool can be used by

another

.

1.4 SOFTWARE PROCESS MODEL

 A software process or software methodology is a set of related activities that

leads to the production of the software.

 These activities may involve the development of the software from the scratch,

or, modifying an existing system.

 Any software process must include the following four activities:

(a) Software specification (or requirements engineering): Define the main

functionalities of the software and the constrains around them.

(b) Software design and implementation: The software is to be designed and

programmed.

•

28

(c) Software verification and validation: The software must conforms to it’s

specification and meets the customer needs.

(d) Software evolution (software maintenance): The software is being mo dified

to meet customer and market requirements changes.

 A process also includes the process description, which includes:

(a) Products: The outcomes of the an activity. For example, the outcome of

architectural design maybe a model for the software architecture.

(b) Roles: The responsibilities of the people involved in the process. For

example, the project manager, programmer, etc.

(c) Pre and post conditions: The conditions that must be true before and after

an activity. For example, the pre condition of the architectural design is the

requirements have been approved by the customer, while the post condition is

the diagrams describing the architectural have been reviewed.

 Software process is complex, it relies on making decisions.

 There’s no ideal process and most organizations have developed their own

software process.

 For example, an organization works on critical systems has a very structured

process, while with business systems, with rapidly changing requirements, a

less formal, flexible process is likely to be more effective.

 A software process model is a simplified representation of a software process.

 Each model represents a process from a specific perspective.

 These generic models are abstractions of the process that can be used to

explain different approaches to the software development.

•

29

 Some methodologies are sometimes known as software development life

cycle(SDLC) methodologies, though this term could also be used more

generally to refer to any methodology.

1.4.1 Software Development Life Cycle

 SDLC is a process followed for a software project, within a software

organization.

 It consists of a detailed plan describing how to develop, maintain, replace and

alter or enhance specific software.

 The life cycle defines a methodology for improving the quality of software

and the overall development process.

•

30

Fig: Software Development Life Cycle

(a) Planning and Requirement Analysis:

 Requirement analysis is the most important and fundamental stage in SDLC.

It is performed by the senior members of the team with inputs from the customer,

the sales department, market surveys and domain experts in the industry. This

information is then used to plan the basic project approach and to conduct product

feasibility study in the economical, operational and technical areas.

(b) Defining Requirements:

•

31

 The next step is to clearly define and document the product requirements and

get them approved from the customer or the market analysts. This is done through

an SRS (Software Requirement Specification) document which consists of all the

product requirements to be designed and developed during the project life cycle.

(c) Designing the Product Architecture:

 SRS is the reference for product architects to come out with the best

architecture for the product to be developed. Based on the requirements specified in

SRS, usually more than one design approach for the product architecture is proposed

and documented in a DDS - Design Document Specification.

(d) Building or Developing Product:

 The programming code is generated as per DDS during this stage. If the design

is performed in a detailed and organized manner, code generation can be

accomplished without much hassle.

(e) Testing the product:

 This stage refers to the testing only stage of the product where product defects

are reported, tracked, fixed and retested, until the product reaches the quality

standards defined in the SRS.

(f) Deployment in the Market and Maintenance:

 Once the product is tested and ready to be deployed it is released formally in

the appropriate market. After the product is released in the market, its maintenance

is done for the existing customer base.

1.4.2 Software Process Model or SDLC Model

(a) Waterfall model:

 The waterfall model is a sequential approach, where each fundamental

activity of a process represented as a separate phase, arranged in linear

order.

•

32

 In the waterfall model, you must plan and schedule all of the activities

before starting working on them (plan-driven process).

 Plan-driven process is a process where all the activities are planned

first, and the progress is measured against the plan.

 The phases of the waterfall model are: Requirements, Design,

Implementation, Testing and Maintenance.

 In principle, the waterfall model should only be applied when

requirements are well understood.

 And also unlikely to change radically during development as this model

has a relatively rigid structure which makes it relatively hard to

accommodate change when the process in underway.

 The software process therefore is not a simple linear but involves

feedback from one phase to another.

•

33

 So, documents produced in each phase may then have to be modified

to reflect the changes made.

 In principle, the waterfall model should only be applied when requi

rements are well understood.

 And also unlikely to change radically during development as this model

has a relatively rigid structure which makes it relatively hard to

accommodate change when the process in underway.

(b) Prototyping Model:

 A prototype is a version of a system or part of the system that’s

developed quickly to check the customer’s requirements or feasibility

of some design decisions.

 So, a prototype is useful when a customer or developer is not sure of

the requirements, or of algorithms, efficiency, business rules, response

time, etc.

 In prototyping, the client is involved throughout the development

process, which increases the likelihood of client acceptance of the final

implementation.

 A software prototype can be used:

 [1] In the requirements engineering, a prototype can help with the

elicitation and validation of system requirements.

 [2] In the system design, a prototype can help to carry out design

experiments to check the feasibility of a proposed design.

 For example, a database design may be prototype-d and tested to check

it supports efficient data access for the most common user queries.

•

34

 The phases of a prototype are:

(i) Establish objectives: The objectives of the prototype should

be made explicit from the start of the process. Is it to validate system

requirements, or demonstrate feasibility, etc.

(ii) Define prototype functionality: Decide what are the inputs

and the expected output from a prototype. To reduce the prototyping

costs and accelerate the delivery schedule, you may ignore some

functionality, such as response time and memory utilization unless they

are relevant to the objective of the prototype.

(iii)Develop the prototype: The initial prototype is developed

that includes only user interfaces.

(iv) Evaluate the prototype: Once the users are trained to use the

prototype, they then discover requirements errors. Using the feedback

both the specifications and the prototype can be improved. If changes

are introduced, then a repeat of steps 3 and 4 may be needed.

•

35

(c) Incremental Development Model:

 Incremental development is based on the idea of developing an initial

implementation, exposing this to user feedback, and evolving it through

several versions until an acceptable system ha s been developed.

 The activities of a process are not separated but interleaved with feedback

involved across those activities.

 Each system increment reflects a piece of the functionality that is

needed by the customer.

 Generally, the early increments of the system should include the most

important or most urgently required functionality.

 This means that the customer can evaluate the system at early stage in

the development to see if it delivers what’s required.

 If not, then only the current increment has to be changed and, possibly,

new functionality defined for later increments.

•

36

(d) Spiral Model:

 The spiral model is a risk-driven where the process is represented as spiral

rather than a sequence of activities.

 It was designed to include the best features from the waterfall and prototyping

models, and introduces a new component; risk-assessment.

 Each loop in the spiral represents a phase.

 Thus the first loop might be concerned with system feasibility, the next loop

might be concerned with the requirements definition, the next loop with

system design, and so on.

 Each loop in the spiral is split into four sectors:

•

37

(a) Objective setting: The objectives and risks for that phase of the project are

defined.

(b) Risk assessment and reduction: For each of the identified project risks, a

detailed analysis is conducted, and steps are taken to reduce the risk. For example,

if there’s a risk that the requirements are inappropriate, a prototype may be

developed.

(c) Development and validation: After risk evaluation, a process model for the

system is chosen. So if the risk is expected in the user interface then we must

prototype the user interface. If the risk is in the development process itself then use

the waterfall model.

(d) Planning: The project is reviewed and a decision is made whether to

continue with a further loop or not.

 Spiral model has been very influential in helping people think about iteration

in software processes and introducing the risk-driven approach to

development.

 In practice, however, the model is rarely used.

•

38

MODULE 2

2.1 PROCESS FRAMEWORK

 Software process models can be prescriptive or agile, complex or

simple, all-encompassing or targeted, but in every case, five key

activities must occur.

 The framework activities are applicable to all projects and all

application domains, and they are a template for every process model.

 Each framework activity is populated by a set of software engineering

actions – a collection of related tasks that produces a major software

engineering work product.

 Each action is populated with individual work tasks that accomplish

some part of the work implied by the action.

 The following generic process framework is applicable to the vast

majority of software projects.

a) Communication: involves heavy communication with the customer

(and other stakeholders) and encompasses requirements gathering.

b) Planning: Describes the technical tasks to be conducted, the risks that

are likely, resources that will be required, the work products to be

produced and a work schedule.

c) Modeling: encompasses the creation of models that allow the

developer and customer to better understand software requirement and

the design that will achieve those requirement.

•

39

d) Construction: combines code generation and the testing required

uncovering errors in the code.

e) Deployment: deliver the product to the customer who evaluates the

delivered product and provides feedback.

 Each software engineering action is represented by a number of different task

sets – each a collection of software engineering work tasks, related work

products, quality assurance points, and project milestones.

 The task set that best accommodates the needs of the project and the

characteristics of the team is chosen.

Fig: Process Framework

 The framework described in the generic view of software engineering is

complemented by a number of umbrella activities. Typical activities include:

Umbrella Activities

Common process framework

Framework activities

Task

Milestone, work product

SQA points

Task sets

•

40

a) Software project tracking and control: allows the team to assess progress

against the project plan and take necessary action to maintain schedule.

b) Risk Management: Assesses the risks that may affect the outcome of the

project or the quality.

c) Software quality assurance: defines and conducts the activities required to

ensure software quality.

d) Formal Technical Review: uncover and remove errors before they propagate

to the next action.

e) Measurement: defines and collects process, project, and product measures

that assist the team in delivering software that meets customers’ needs.

f) Software configuration management: Manages the effect of change

throughout the software process.

g) Reusability management: defines criteria for work product reuse.

h) Work product preparation and production: encompasses the activities

required to create work products such as models, documents, etc.

2.1.1 Capability Maturity Model (CMM):

 SEI Capability Maturity Model (SEI CMM) helped organizations to improve

the quality of the software they develop and therefore adoption of SEI CMM

model has significant business benefits.

 SEI CMM can be used two ways: capability evaluation and software process

assessment.

•

41

 Capability evaluation and software process assessment differ in motivation,

objective, and the final use of the result. Capability evaluation provides a way

to assess the software process capability of an organization.

 The results of capability evaluation indicates the likely contractor

performance if the contractor is awarded a work. Therefore, the results of

software process capability assessment can be used to select a contractor.

 On the other hand, software process assessment is used by an organization

with the objective to improve its process capability. Thus, this type of

assessment is for purely internal use.

 SEI CMM classifies software development industries into the following five

maturity levels.

 The different levels of SEI CMM have been designed so that it is easy for an

organization to slowly build its quality system starting from scratch.

a) Level 1: Initial. A software development organization at this level

is characterized by ad hoc activities. Very few or no processes are

defined and followed. Since software production processes are not

defined, different engineers follow their own process and as a result

development efforts become chaotic. Therefore, it is also called

chaotic level. The success of projects depends on individual efforts

and heroics.

b) Level 2: Repeatable. At this level, the basic project management

practices such as tracking cost and schedule are established. Size

and cost estimation techniques like function point analysis,

COCOMO, etc. are used. The necessary process discipline is in

place to repeat earlier success on projects with similar applications.

•

42

c) Level 3: Defined. At this level the processes for both management

and development activities are defined and documented. There is a

common organization-wide understanding of activities, roles, and

responsibilities. The processes though defined, the process and

product qualities are not measured.

d) Level 4: Managed. At this level, the focus is on software metrics.

Two types of metrics are collected. Product metrics measure the

characteristics of the product being developed, such as its size,

reliability, time complexity, understandability, etc. Process metrics

reflect the effectiveness of the process being used, such as average

defect correction time, productivity, average number of defects

found per hour inspection, average number of failures detected

during testing per LOC, etc. Quantitative quality goals are set for the

products. The software process and product quality are measured

and quantitative quality requirements for the product are met.

e) Level 5: Optimizing. At this stage, process and product metrics are

collected. Process and product measurement data are analyzed for

continuous process improvement.

Applicability of SEI CMM to organizations

 Highly systematic and measured approach to software development suits large

organizations dealing with negotiated software, safety-critical software, etc.

For those large organizations, SEI CMM model is perfectly applicable.

 But small organizations typically handle applications such as Internet, e-

commerce, and are without an established product range, revenue base, and

•

43

experience on past projects, etc. For such organizations, a CMM-based

appraisal is probably excessive.

 These organizations need to operate more efficiently at the lower levels of

maturity. For example, they need to practice effective project management,

reviews, configuration management, etc.

2.1.2 ISO 9000:

 ISO (International Standards Organization) is a consortium of 63 countries

established to formulate and foster standardization. ISO published its 9000

series of standards in 1987.

 ISO certification serves as a reference for contract between independent

parties. The ISO 9000 standard specifies the guidelines for maintaining a

quality system.

 The ISO standard mainly addresses operational aspects and organizational

aspects such as responsibilities, reporting, etc.

Types of ISO 9000 quality standards

 ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO 9003.

 The ISO 9000 series of standards is based on the premise that if a proper

process is followed for production, then good quality products are bound to

follow automatically.

•

44

 The types of industries to which the different ISO standards apply are as

follows:

a) ISO 9001 applies to the organizations engaged in design,

development, production, and servicing of goods. This is the standard

that is applicable to most software development organizations.

b) ISO 9002 applies to those organizations which do not design products

but are only involved in production. Examples of these category

industries include steel and car manufacturing industries that buy the

product and plant designs from external sources and are involved in

only manufacturing those products. Therefore, ISO 9002 is not

applicable to software development organizations.

c) ISO 9003 applies to organizations that are involved only in

installation and testing of the products.

Need for obtaining ISO 9000 certification

a) Confidence of customers in an organization increases when organization

qualifies for ISO certification.

b) ISO 9000 requires a well-documented software production process to be in

place. A well-documented software production process contributes to

repeatable and higher quality of the developed software.

c) ISO 9000 makes the development process focused, efficient, and

costeffective.

d) ISO 9000 certification points out the weak points of an organization and

recommends remedial action.

•

45

e) ISO 9000 sets the basic framework for the development of an optimal process

and Total Quality Management (TQM).

Salient features of ISO 9001 certification

a) All documents concerned with the development of a software product should

be properly managed, authorized, and controlled. This requires a

configuration management system to be in place.

b) Proper plans should be prepared and then progress against these plans should

be monitored.

c) Important documents should be independently checked and reviewed for

effectiveness and correctness.

d) The product should be tested against specification.

e) Several organizational aspects should be addressed e.g., management

reporting of the quality team.

2.2 PHASES OF SOFTWARE DEVELOPMENT LIFECYCLE

 Software life cycle models describe phases of the software cycle and the order

in which those phases are executed.

 Each phase produces deliverables required by the next phase in the life cycle.

 Requirements are translated into design. Code is produced according to the

design which is called development phase. After coding and development the

•

46

testing verifies the deliverable of the implementation phase against

requirements.

 The testing team follows Software Testing Life Cycle (STLC) which is similar

to the development cycle followed by the development team.

 There are following six phases in every Software development life cycle

model:

1) Requirement gathering and analysis:

 Business requirements are gathered in this phase. This phase is

the main focus of the project managers and stake holders.

 Meetings with managers, stake holders and users are held in

order to determine the requirements are done at this stage.

 After requirement gathering these requirements are analyzed for

their validity and the possibility of incorporating the

requirements in the system to be development is also studied.

 Finally, a Requirement Specification document is created which

serves the purpose of guideline for the next phase of the model.

 The testing team follows the Software Testing Life Cycle and

starts the Test Planning phase after the requirements analysis is

completed.

•

47

2) Design:

 In this phase the system and software design is prepared from the

requirement specifications which were studied in the first phase.

 System Design helps in specifying hardware and system

requirements and also helps in defining overall system

architecture.

 The system design specifications serve as input for the next phase

of the model.

 In this phase the testers comes up with the Test strategy, where

they mention what to test, how to test.

3) Implementation / Coding:

 On receiving system design documents, the work is divided

in modules/units and actual coding is started.

 Since, in this phase the code is produced so it is the main focus

for the developer.

 This is the longest phase of the software development life

cycle.

4) Testing:

 After the code is developed it is tested against the

requirements to make sure that the product is actually solving

•

48

the needs addressed and gathered during the requirements

phase.

 During this phase all types of functional testing like unit

testing, integration testing, system testing, acceptance testing

are done as well as non-functional testing are also done.

5) Deployment:

 After successful testing the product is delivered / deployed

to the customer for their use.

 As soon as the product is given to the customers they will

first do the beta testing.

 If any changes are required or if any bugs are caught, then

they will report it to the engineering team.

 Once those changes are made or the bugs are fixed then

the final deployment will happen.

6) Maintenance:

 Once when the customers starts using the developed

system then the actual problems comes up and needs to

be solved from time to time.

•

49

 This process where the care is taken for the developed

product is known as maintenance.

2.6 REQUIREMENT ANALYSIS: REQUIREMENTS ELICITATION AND

ANALYSIS

 After an initial feasibility study, the next stage of the requirements

engineering process is requirements elicitation and analysis.

 In this activity, software engineers work with customers and system end-users

to find out about the application domain, what services the system should

provide, the required performance of the system, hardware constraints, and so

on.

 Requirements elicitation and analysis may involve a variety of different kinds

of people in an organization.

 Each organization will have its own version or instantiation of this general

model depending on local factors such as the expertise of the staff, the type of

system being developed, the standards used, etc.

•

50

Fig: Requirement elicitation and analysis process

 The process activities are:

1. Requirements discovery:

 This is the process of interacting with stakeholders of the system to

discover their requirements.

 Domain requirements from stakeholders and documentation are also

discovered during this activity.

REQUIREMENTS

DISCOVERY

REQUIREMENTS

CLASSIFICATION AND

ORGANIZATION

REQUIREMENTS

PRIORTIZATION AND

NEGOTIATION

REQUIREMENTS

SPECIFICATION

•

51

2. Requirements classification and organization

 This activity takes the unstructured collection of requirements, groups

related requirements, and organizes them into coherent clusters.

 The most common way of grouping requirements is to use a model of

the system architecture to identify sub-systems and to associate

requirements with each sub-system.

3. Requirements prioritization and negotiation

 This activity is concerned with prioritizing requirements and finding

and resolving requirements conflicts through negotiation.

4. Requirements specification

 The requirements are documented and input into the next round of

the spiral.

Eliciting and understanding requirements from system stakeholders is a difficult

process for several reasons:

1. Stakeholders often don’t know what they want from a computer system

except in the most general terms.

•

52

2. Stakeholders in a system naturally express requirements in their own terms

and with implicit knowledge of their own work. Requirements engineers, without

experience in the customer’s domain, may not understand these requirements.

3. Different stakeholders have different requirements and they may express

these in different ways.

4. Political factors may influence the requirements of a system. Managers may

demand specific system requirements because these will allow them to increase their

influence in the organization.

5. The economic and business environment in which the analysis takes place

is dynamic. It inevitably changes during the analysis process.

2.6.1 Requirements Discovery

 Requirements discovery (sometime called requirements elicitation) is the

process of gathering information about the required system and existing

systems, and distilling the user and system requirements from this

information.

 Sources of information during the requirements discovery phase include

documentation, system stakeholders, and specifications of similar systems.

You interact with stakeholders through interviews and observation and you

may use scenarios and prototypes to help stakeholders understand what the

system will be like.

 Stakeholders range from end-users of a system through managers to external

stakeholders such as regulators, who certify the acceptability of the system.

•

53

2.6.2 Interviews

 Formal or informal interviews with system stakeholders are part of most

requirements engineering processes.

 In these interviews, the requirements engineering team puts questions to

stakeholders about the system that they currently use and the system to be

developed.

 Requirements are derived from the answers to these questions and interviews

may be of two types:

o Closed interviews, where the stakeholder answers a pre-defined set of

questions.

o Open interviews, in which there is no pre-defined agenda.

 It can be difficult to elicit domain knowledge through interviews for two

reasons:

o All application specialists use terminology and jargon that are specific

to a domain.

o Some domain knowledge is so familiar to stakeholders that they either

find it difficult to explain or they think it is so fundamental that it isn’t

worth mentioning.

 Effective interviewers have two characteristics:

o They are open-minded, avoid pre-conceived ideas about the

requirements, and are willing to listen to stakeholders.

o They prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by working together

on a prototype system.

•

54

2.6.3 Scenarios

 People usually find it easier to relate to real-life examples rather than abstract

descriptions.

 They can understand and criticize a scenario of how they might interact with

a software system.

 Requirements engineers can use the information gained from this discussion

to formulate the actual system requirements.

 Scenarios can be particularly useful for adding detail to an outline

requirements description.

 They are descriptions of example interaction sessions. Each scenario usually

covers one or a small number of possible interactions.

 Different forms of scenarios are developed and they provide different types of

information at different levels of detail about the system.

 Scenario-based elicitation involves working with stakeholders to identify

scenarios and to capture details to be included in these scenarios.

 Scenarios may be written as text, supplemented by diagrams, screen shots,

etc.

 Alternatively, a more structured approach such as event scenarios or use cases

may be used.

2.6.4 Use cases

 Use cases are a requirements discovery technique that were first introduced in

the objectory method and they have now become a fundamental feature of the

unified modeling language.

•

55

 In their simplest form, a use case identifies the actors involved in an

interaction and names the type of interaction.

 This is then supplemented by additional information describing the interaction

with the system.

 The additional information may be a textual description or one or more

graphical models such as UML sequence or state charts.

 Use cases are documented using a high-level use case diagram. The set of use

cases represents all of the possible interactions that will be described in the

system requirements.

 Actors in the process, who may be human or other systems, are represented

as stick figures. Each class of interaction is represented as a named ellipse.

 Lines link the actors with the interaction.

 Use cases identify the individual interactions between the system and its users

or other systems.

 Scenarios and use cases are effective techniques for eliciting requirements

from stakeholders who interact directly with the system.

 Each type of interaction can be represented as a use case.

 However, because they focus on interactions with the system, they are not as

effective for eliciting constraints or high-level business and nonfunctional

requirements or for discovering domain requirements.

2.6.5 Ethnography

 Ethnography is an observational technique that can be used to understand

operational processes and help derive support requirements for these

processes.

•

56

 The value of ethnography is that it helps discover implicit system

requirements that reflect the actual ways that people work, rather than the

formal processes defined by the organization.

 Ethnography is particularly effective for discovering two types of

requirements:

1. Requirements that are derived from the way in which people actually

work, rather than the way in which process definitions say they ought

to work.

2. Requirements that are derived from cooperation and awareness of other

people’s activities

 Ethnographic studies can reveal critical process details that are often missed

by other requirements elicitation techniques.

 However, because of its focus on the end-user, this approach is not always

appropriate for discovering organizational or domain requirements.

 They cannot always identify new features that should be added to a system.

 Ethnography is not, therefore, a complete approach to elicitation on its own

and it should be used to complement other approaches, such as use case

analysis.

2.7 ANALYSIS PRINCIPLES

 Over the past two decades, a large number of analysis modeling methods have

been developed.

 Investigators have identified analysis problems and their causes and have

developed a variety of notations and corresponding sets of heuristics to

overcome them.

•

57

 Each analysis method has a unique point of view.

i. The information domain of a problem must be represented and

understood.

ii. The functions that the software is to perform must be defined.

iii. The behavior of the software must be represented.

iv. The models that depict information function and behavior must be

partitioned in a manner that uncovers details in a layered fashion.

v. The analysis process should move from essential information

toward implementation detail.

 In addition to these operational analysis principles for requirements

engineering:

a) Understand the problem before you begin to create the analysis model.

b) Develop prototype that enable a user to understand how

human/machine interaction will occur.

c) Record the origin of and the reason for every requirement.

d) Use multiple views of requirements.

e) Rank requirements.

f) Work to eliminate ambiguity

2.8 SOFTWARE PROTOTYPING

 The Software Prototyping refers to building software application prototypes

which displays the functionality of the product under development, but may

not actually hold the exact logic of the original software.

•

58

 Software prototyping is becoming very popular as a software development

model, as it enables to understand customer requirements at an early stage of

development.

 It helps get valuable feedback from the customer and helps software

designers and developers understand about what exactly is expected from the

product under development.

 Prototype is a working model of software with some limited functionality.

 The prototype does not always hold the exact logic used in the actual software

application and is an extra effort to be considered under effort estimation.

 Prototyping is used to allow the users evaluate developer proposals and try

them out before implementation. It also helps understand the requirements

which are user specific and may not have been considered by the developer

during product design.

 Following is a stepwise approach explained to design a software prototype.

i. Basic Requirement Identification

 This step involves understanding the very basics product

requirements especially in terms of user interface.

 The more intricate details of the internal design and

external aspects like performance and security can be

ignored at this stage.

ii. Developing the initial Prototype

 The initial Prototype is developed in this stage, where

the very basic requirements are showcased and user

interfaces are provided.

•

59

 These features may not exactly work in the same

manner internally in the actual software developed.

 While, the workarounds are used to give the same look

and feel to the customer in the prototype developed.

iii. Review of the Prototype

 The prototype developed is then presented to the customer

and the other important stakeholders in the project.

 The feedback is collected in an organized manner and used

for further enhancements in the product under development.

iv. Revise and Enhance the Prototype

 The feedback and the review comments are discussed during this

stage and some negotiations happen with the customer based on

factors like – time and budget constraints and technical

feasibility of the actual implementation.

 The changes accepted are again incorporated in the new

Prototype developed and the cycle repeats until the customer

expectations are met.

 Prototypes can have horizontal or vertical dimensions. A Horizontal

prototype displays the user interface for the product and gives a broader view

of the entire system, without concentrating on internal functions.

•

60

 A Vertical prototype on the other side is a detailed elaboration of a specific

function or a sub system in the product.

 Horizontal prototypes are used to get more information on the user interface

level and the business requirements. It can even be presented in the sales

demos to get business in the market.

 Vertical prototypes are technical in nature and are used to get details of the

exact functioning of the sub systems. For example, database requirements,

interaction and data processing loads in a given sub system.

2.8.1 Software Prototyping - Types

 Throwaway/Rapid Prototyping

o Throwaway prototyping is also called as rapid or close

ended prototyping.

o This type of prototyping uses very little efforts with

minimum requirement analysis to build a prototype.

o Once the actual requirements are understood, the

prototype is discarded and the actual system is developed

with a much clear understanding of user requirements.

 Evolutionary Prototyping

o Evolutionary prototyping also called as breadboard

prototyping is based on building actual functional

prototypes with minimal functionality in the beginning.

•

61

o The prototype developed forms the heart of the future

prototypes on top of which the entire system is built.

o By using evolutionary prototyping, the well-understood

requirements are included in the prototype and the

requirements are added as and when they are understood.

 Incremental Prototyping

o Incremental prototyping refers to building multiple

functional prototypes of the various sub-systems and then

integrating all the available prototypes to form a complete

system.

 Extreme Prototyping

o Extreme prototyping is used in the web development

domain. It consists of three sequential phases.

o First, a basic prototype with all the existing pages is

presented in the HTML format.

•

62

o Then the data processing is simulated using a prototype

services layer.

o Finally, the services are implemented and integrated to the

final prototype.

o This process is called Extreme Prototyping used to draw

attention to the second phase of the process, where a fully

functional UI is developed with very little regard to the

actual services.

 The advantages of the Prototyping Model are as follows :

a) Increased user involvement in the product even before its

implementation.

b) Since a working model of the system is displayed, the users get a better

understanding of the system being developed.

c) Reduces time and cost as the defects can be detected much earlier.

d) Quicker user feedback is available leading to better solutions.

e) Missing functionality can be identified easily.

f) Confusing or difficult functions can be identified.

 The Disadvantages of the Prototyping Model are as follows:

•

63

a) Risk of insufficient requirement analysis owing to too much

dependency on the prototype.

b) Users may get confused in the prototypes and actual systems.

c) Practically, this methodology may increase the complexity of the

system as scope of the system may expand beyond original plans.

d) Developers may try to reuse the existing prototypes to build the actual

system, even when it is not technically feasible.

e) The effort invested in building prototypes may be too much if it is not

monitored properly.

•

64

MODULE 3

3.1 PLANNING PHASE

 The software project management process begins with set of activities called

project planning.

 It is the heart of project life cycle, and informs all involved where to go and

how to go.

 It helps to manage time, cost, quality, changes, risk and related issues.

3.1.1 Purpose of Project Planning Phase

i. Establish business requirements.

ii. Establish cost, schedule, list of deliverables and delivery dates.

iii. Establish resource plans.

iv. Obtain management approval and proceed to next phase.

3.1.2 Basic process of Project Planning

(a) Software planning: specify in-scope requirement for project to facilitate

creating work break down structure.

(b) Preparation of work breakdown structure:Breakdown the project into

tasks and sub-tasks.

•

65

(c) Project schedule development: Listing the entire schedule of activities

and sequence of implementation.

(d) Resource planning:It specifies who will do what, at which time and any

special skill needed.

(e) Budget planning:It specifies cost to be incurred at completion of the

project.

(f) Procurement planning:It focuses on vendors outside your company and

subcontracting.

(g) Risk management: It includes possible risks and solutions for them.

(h) Quality planning: It is assessing quality criteria to be used.

(i) Communication planning:It includes designing communication strategy

with stakeholders.

3.1.3 Software Scope

 It is the first step in project planning.

 It should have function and performance details which is unambiguous and

understandable at management and technical levels.

 It describes data and control to be processed, function, performance,

constraints, interfaces and reliability.

 It addresses the following:

•

66

(i) Function: Actions and information transformations performed

by the system.

(ii) Performance: Processing and response time required.

(iii) Constraints: Limits placed over software like memory

restriction.

(iv) Interfaces: Interaction with user and other system.

(v) Reliability: Quantitative requirements for functional

performance like mean time between failures, acceptable error

rates.

3.1.4 Resources

 The second stage in planning is estimation of resources requires.

 There are three types of resources in project planning and they are as follows:

(i) Human Resources:

 Here both organizational position and specialty are

considered.

 This need to identify: (i) skill set; and (ii) development

effort.

(ii) Reusable Software Resources:

 Component Based Software Engineering (CBSE) emphasizes

reusability- creation and reuse of software building blocks.

 Such building blocks are called components.

•

67

 It can be categorized as:

(a) Off-the-shelf components: It aims at the use of existing

software from third party.

(b) Full-experience components: It focus on use of in house

software already developed which requires less

modification, All the team members will be experienced

with the software.

(c) Partial-experience components: It focuses on use of in

house software already developed which requires major

modification. All the team members will be experienced

with the software.

(d) New Components: It focuses on building new softwares.

(iii) Environmental Resources:

 Hardware provides the platform to support the softwares required

to produce the work.

3.1.5 Empirical Cost Estimation Model: COCOMO Model

 The Constructive Cost Model (COCOMO) is a procedural software cost

estimation model developed by Barry W Boehm.

 COCOMO is used to estimate size, effort and duration based on the cost of

the software

 COCOMO consists of a hierarchy of three increasingly detailed and accurate

forms.

•

68

 The first level, Basic COCOMO is good for quick, early, rough order of

magnitude estimates of software costs.

 But its accuracy is limited due to its lack of factors to account for difference

in project attributes (Cost Drivers).

 Intermediate COCOMO takes these Cost Drivers into account.

 Detailed COCOMO additionally accounts for the influence of individual

project phases.

Basic COCOMO

 Basic COCOMO computes software development effort (and cost) as a

function of program size.

 Program size is expressed in estimated thousands of source lines of code

(SLOC, KLOC).

 COCOMO applies to three classes of software projects:

 Organic projects - "small" teams with "good" experience working with

"less than rigid" requirements

 Semi-detached projects - "medium" teams with mixed experience

working with a mix of rigid and less than rigid requirements

 Embedded projects - developed within a set of "tight" constraints. It is

also combination of organic and semi-detached projects.(hardware,

software, operational, ...)

 The basic COCOMO equations take the form

•

69

 Effort Applied (E) = ab(KLOC)b
b

 Development Time (D) = cb(Effort Applied)d
b

 People required (P) = Effort Applied / Development Time

where, KLOC is the estimated number of delivered lines (expressed

in thousands) of code for project.

 The coefficients ab, bb, cb and db are given in the following table:

 Basic COCOMO is good for quick estimate of software costs.

 However it does not account for differences in hardware constraints,

personnel quality and experience, use of modern tools and techniques, etc

Intermediate COCOMO

 Intermediate COCOMO computes software development effort as function of

program size and a set of "cost drivers" that include subjective assessment of

product, hardware, personnel and project attributes.

Software

project
ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-

detached
3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

•

70

 This extension considers a set of four "cost drivers", each with a number of

subsidiary attributes:-

(a) Product attributes

Required software reliability extent

Size of application database

Complexity of the product

(b) Hardware attributes

Run-time performance constraints

Memory constraints

Volatility of the virtual machine environment

Required turnabout time

(c) Personnel attributes

Analyst capability

Software engineering capability

Applications experience

Virtual machine experience

Programming language experience

(d) Project attributes

Use of software tools

Application of software engineering methods

Required development schedule

•

71

 Each of the 15 attributes receives a rating on a six-point scale that ranges from

"very low" to "extra high" (in importance or value).

 The product of all effort multipliers results is an effort adjustment factor

(EAF).

 Typical values for EAF range from 0.9 to 1.4.

•

72

 The Intermediate Cocomo formula now takes the form:

E=ai(KLoC)(bi)(EAF)

where E is the effort applied in person months,

KLoC is the estimated number of thousands of delivered lines of

code for the project,

EAF is the factor calculated above.

 The coefficient ai and the exponent bi are given in the above table.

 The Development time D calculation uses E in the same way as in the Basic

COCOMO.

Detailed COCOMO

 Detailed COCOMO incorporates all characteristics of the intermediate

version with an

assessment of the cost driver's impact on each step (analysis, design, etc.) of

the software engineering process.

Software project ai bi

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

•

73

 The detailed model uses different effort multipliers for each cost driver

attribute.

 These Phase Sensitive effort multipliers are each to determine the amount of

effort required to complete each phase.

 In detailed COCOMO, the whole software is divided into different modules

and then we apply COCOMO in different modules to estimate effort and then

sum the effort.

 The effort is calculated as a function of program size and a set of cost drivers

are given according to each phase of the software life cycle.

 The Six phases of detailed COCOMO are:-

a) planning and requirements

b) system design

c) detailed design

d) module code and test

e) integration and test

f) Cost Constructive model

3.1.6 STAFFING AND PERSONAL PLANNING

 Staffing is the practice of finding, evaluating, and establishing a working

relationship with future colleagues on a project and firing them when they are

no longer needed.

 Staffing involves finding people, who may be hired or already working for the

company (organization) or may be working for competing companies.

•

74

 In knowledge economies, where talent becomes the new capital, this

discipline takes on added significance to help organizations achieve a

competitive advantage in each of their marketplaces.

 "Staffing" can also refer to the industry and/or type of company that provides

the functions described in the previous definition for a price.

 A staffing company may offer a variety of services, including temporary help,

permanent placement, managed services, training, etc.

Staffing a Software Project

 Staffing must be done in a way that maximizes the creation of some value to

a project.

 In this sense, the semantics of value must be addressed regarding project and

organizational characteristics.

 Some projects are schedule driven: to create value for such project could mean

to act in a way that reduces its schedule or risks associated to it.

 Other projects may be driven by budget, resource allocation, and so on.

 Staff allocation optimizer cannot be fixed by a single utility function, but

several such functions should be available for the manager to decide which

best fit the project under analysis.

 In our approach, we consider that a characteristic may be a skill, a capability,

an experience, some knowledge, a role in the organization or in the project,

and others.

 Each characteristic is associated with a rating scale, with the intensity levels

the characteristic may assume.

 Staffing is performed according to the following rules:

http://www.answers.com/topic/knowledge-economy

•

75

 (a) A person can only be allocated to an activity if he or she possesses at

least all the characteristics demanded by the activity, in an intensity level

greater or equal to the demanded level of the activity.

 (b) A person can only be allocated to an activity if he or she is available

to perform the activity in the period it needs to be performed.

Personal Planning

 This includes estimation or allocation of right persons or individuals for the

right type of tasks of which they are capable.

 The capability of the individuals should always match with the overall

objective of the project.

 In software Engineering, personnel planning should be in accordance to the

final development of the project.

Staffing Activities for a Software Project

a) Fill organizational positions

Select, recruit, or promote qualified people for each project position

b) Assimilate newly assigned software personnel

Orient and familiarize new people with the organization, facilities, and tasks

to be done on the project

•

76

c) Educate or train personnel as necessary

Make up deficiencies in position qualifications through training and

education

d) Provide for general development of the project staff

Improve knowledge, attitudes, and skills of project personnel

e) Evaluate and appraise project personnel

Record and analyze the quantity and quality of project work as the basis for

personnel evaluations; set performance goals and appraise personnel

periodically

f) Compensate the project personnel

Provide wages, bonuses, benefits, or other financial remuneration

commensurate with project responsibilities and performance

g) Terminate project assignments

Transfer or separate project personnel as necessary

h) Document project staffing decisions

Record staffing plans, training plans and achievements, appraisal records,

and compensations recommendations.

3.2 DESIGN PHASE

 Software design is an iterative process through which requirements are

translated into a “blueprint” for constructing the software.

 Initially, the blueprint depicts a holistic view of software.

 That is, the design is represented at a high level of abstraction—a level that

can be directly traced to the specific system objective and more detailed data,

functional, and behavioral requirements.

•

77

 As design iterations occur, subsequent refinement leads to design

representations at much lower levels of abstraction.

3.2.1 Software Quality Guidelines and Attributes

 There are three characteristics that serve as a guide for the evaluation of a

good design:

a) The design should implement all of the explicit requirements contained in

the requirements model, and it must accommodate all of the implicit

requirements desired by stakeholders.

b) The design should be a readable, understandable guide for those who

generate code and for those who test and subsequently support the

software.

c) The design should provide a complete picture of the software, addressing

the data, functional, and behavioral domains from an implementation

perspective.

 In order to evaluate the quality of a design representation, the software team

must establish technical criteria for good design and few of the guidelines are

as follows:

a) A design should exhibit an architecture that (1) has been created using

recognizable architectural styles or patterns, (2) is composed of

components that exhibit good design, and (3) can be implemented in an

evolutionary fashion.

b) A design should be modular; that is, the software should be logically

partitioned into elements or subsystems.

•

78

c) A design should contain distinct representations of data, architecture,

interfaces,and components.

d) A design should lead to data structures that are appropriate for the

classes to be implemented and are drawn from recognizable data

patterns.

e) A design should lead to components that exhibit independent functional

characteristics.

f) A design should lead to interfaces that reduce the complexity of

connections between components and with the external environment.

g) A design should be derived using a repeatable method that is driven by

information obtained during software requirements analysis.

h) A design should be represented using a notation that effectively

communicates its meaning.

 The quality attributes represent a target for all software design and few of

them are as follows:

a) Functionality is assessed by evaluating the feature set and capabilities of

the program, the generality of the functions that are delivered, and the

security of the overall system.

b) Usability is assessed by considering human factors, overall aesthetics,

consistency, and documentation.

c) Reliability is evaluated by measuring the frequency and severity of failure,

the accuracy of output results, the mean-time-to-failure (MTTF), the

ability to recover from failure, and the predictability of the program.

•

79

d) Performance is measured using processing speed, response time, resource

consumption, throughput, and efficiency.

e) Supportability combines extensibility, adaptability, and serviceability.

3.2.2 Design Principles

 Software design is both a process and a model. The design process is a

sequence of steps that enable the designer to describe all aspects of the

software to be built.

 The design model begins by representing the totality of the thing to be built

and slowly refines the thing to provide guidance for constructing each detail.

 Basic design principles enable the software engineer to navigate the design

process and following are the list of principles:

(i) The design process should not suffer from “tunnel vision.”

(ii) The design should be traceable to the analysis model.

(iii) The design should not reinvent the wheel

(iv) The design should “minimize the intellectual distance” between the

software and the problem as it exists in the real world.

(v) The design should exhibit uniformity and integration.

(vi) The design should be structured to accommodate change.

(vii) The design should be structured to degrade gently, even when aberrant

data, events, or operating conditions are encountered.

(viii) Design is not coding, coding is not design.

(ix) The design should be assessed for quality as it is being created, not after

the fact.

•

80

(x) The design should be reviewed to minimize conceptual

(semantic)errors.

3.2.3Design Concepts

 A set of fundamental software design concepts has evolved over the history

of software engineering.

 Each provides the software designer with a foundation from which more

sophisticated design methods can be applied.

 Each helps you define criteria that can be used to partition software into

individual components, separate or data structure detail from a conceptual

representation of the software, and establish uniform criteria that define the

technical quality of a software design.

(a) Abstraction:

 At the highest level of abstraction, a solution is stated in broad terms

using the language of the problem environment.

 At lower levels of abstraction,a more detailed description of the

solution is provided.

 As different levels of abstraction are developed, you work to create both

procedural and data abstractions.

 A procedural abstraction refers to a sequence ofinstructions that have

a specific and limited function.

 The name of a proceduralabstraction implies these functions, but

specific details are suppressed.

•

81

 A data abstraction is a named collection of data that describes a data

object.

(b) Architecture

 Software architecture aims to the overall structure of the software and

the ways in which that structure provides conceptual integrity for a

system.

 Architecture is the structure or organization of program components

(modules), the manner in which these components interact, and

thestructure of data that are used by the components.

 One goal of software design is to derive an architectural rendering of a

system.

 Structural properties define the componentsof a system (e.g., modules,

objects, filters) and the manner in which those componentsare packaged

and interact with one another.

 Given the specification of these properties, the architectural design can

berepresented using one or more of a number of different models.

 Structuralmodels represent architecture as an organized collection of

programcomponents.

•

82

 Framework models increase the level of design abstraction

byattempting to identify repeatable architectural design frameworks

(patterns)that are encountered in similar types of applications.

 Dynamic models addressthe behavioral aspects of the program

architecture, indicating how the structure or system configuration may

change as a function of external events.

 Processmodels focus on the design of the business or technical process

that the systemmust accommodate.

 Finally, functional models can be used to represent the

functionalhierarchy of a system.

 A number of different architectural description languages (ADLs) have

beendeveloped to represent these models.

 Although many different ADLshave been proposed, the majority

provide mechanisms for describing systemcomponents and the manner

in which they are connected to one another.

(c) Pattern

 A pattern is a named nugget of insight which conveys the essence of a

proven solution to a recurring problem within a certain context amidst

competing concerns.

•

83

 The intent of each design pattern is to provide a description that

enables a designer to determine:

 (1) Whether the pattern is applicable to the current work,

 (2) Whether the pattern can be reused, and

 (3) Whether the pattern can serve as a guide for developing a

 similar, but functionally or structurally different pattern.

(d) Separation of concerns

 Separation of concerns is a design concept that suggests that any complex

problem can be more easily handled if it is subdivided into pieces that can

each be solved and/or optimized independently.

 A concern is a feature or behavior that is specified as part of the

requirements model for the software.

 By separating concerns into smallerand therefore more manageable pieces,

a problem takes less effort and time to solve.

 This leads to a divide-and-conquer strategy where it is easier to solvea

complex problem when you break it into manageable pieces.

 Separation of concerns is manifested in other related design concepts:

modularity,aspects, functional independence, and refinement.

(e) Modularity

 Modularity is the most common manifestation of separation of concerns.

 Software is divided into separately named and addressable components,

sometimes called modules that are integrated to satisfy problem

requirements.

•

84

 Modularity is the single attribute of software that allowsa program to be

intellectually manageable.

 You modularize a design (and the resulting program) so that:

i. Development can be more easily planned;

ii. Software increments can be defined and delivered;

iii. Changes can be more easily accommodated;

iv. Testing and debugging can be conducted more efficiently, and

v. Long-term maintenance can be conducted without serious side

effects.

(f) Information Hiding

 Hiding implies that effective modularity can be achieved by defining a

set of independent modules that communicate with one another only

that information necessary to achieve software function.

 The use of information hiding as a design criterion for modular systems

provides the greatest benefits when modifications are required during

testing and later during software maintenance.

 Because most data and procedural detail are hidden from other parts of

the software, errors introduced during modification are less likely to

propagate to other locations within the software.

(g) Functional Independence

 Software with effective modularity, that is, independent modules, is

easier to develop because function can be compartmentalized and

interfaces are simplified.

•

85

 Independent modules are easier to maintain (and test) because

secondary effects caused by design or code modification are limited,

error propagation is reduced, and reusable modules are possible.

 Functional independence is a key to good design, and design is the key

to software quality.

 Independence is assessed using two qualitative criteria: cohesion and

coupling.

 Cohesion is an indication of the relative functional strength of a

module.

 Cohesive module performs a single task, requiring little interactionwith

other components in other parts of a program.

 Coupling is an indication of the relative interdependence among

modules.

 Coupling is an indication of interconnection among modules in a

softwarestructure.

 Coupling depends on the interface complexity between modules,

thepoint at which entry or reference is made to a module, and what data

pass across the interface.

(h) Refinement

 Stepwise refinement is a top-down design strategy originally proposed

by Niklaus Wirth.

 An application is developed by successively refining levels of

procedural detail.

•

86

 Abstraction enables you to specify procedure and data internally but

suppress the need for outsiders to have knowledge of low-level details.

 Refinement helps you to reveal low-level details as design progresses.

(i) Refactoring

 Refactoring is a reorganization technique that simplifies the design (or

code) of a component without changing its function or behavior.

 Although the intent of refactoring is to modify the code in a manner

that does not alter its external behavior, inadvertent side effects can and

do occur.

 As a consequence, refactoring tools are used to analyze changes

automatically and to generate a test suite suitable for detecting

behavioral changes.

(j) Object Oriented Design Concepts

 The object-oriented (OO) paradigm is widely used in modern software

engineering.

 OO design concepts such as classes and objects, inheritance, messages,

and polymorphism, among others are employed.

3.3 EFFECTIVE MODULAR DESIGN

 Modularity has become an accepted approach in all engineering disciplines.

•

87

 A modular design reduces complexity, facilitates change, and results in easier

implementation by encouraging parallel development of different parts of a

system.

 The concept of functional independence is a direct outgrowth of modularity

and the concepts of abstraction and information hiding.

 Software with effective modularity, that is, independent modules, is easier to

develop because function may be compartmentalized and interfaces are

simplified.

 Functional independence is a key to good design, and design is the key to

software quality.

 Independence is measured using two qualitative criteria: cohesion and

coupling.

 Cohesion is a measure of the relative functional strength of a module.

 Coupling is a measure of the relative interdependence among modules.

3.3.1 Cohesion

 Cohesion is a natural extension of the information hiding concept.

 A cohesive module performs a single task within a software procedure,

requiring little interaction with procedures being performed in other parts of

a program.

 Cohesion may be represented as a "spectrum.“ and it can have:

a. Modules that perform a set of tasks that relate to each other loosely are

termed coincidentally cohesive.

•

88

b. A module that performs tasks that are related logically is logically

cohesive.

c. When a module contains tasks that are related by the fact that all must

be executed with the same span of time, the module exhibits temporal

cohesion.

 When processing elements of a module are related and must be executed in a

specific order, procedural cohesion exists.

 When all processing elements concentrate on one area of a data structure,

communicational cohesion is present.

3.3.2 Coupling

 Coupling is a measure of interconnection among modules in a software

structure.

 Coupling depends on the interface complexity between modules, the point at

which entry or reference is made to a module, and what data pass across the

interface.

 Simple connectivity among modules results in software that is easier to

understand and less prone to a "ripple effect", caused when errors occur at one

location and propagates through a system.

 Figure below shows the different types of module coupling:

•

89

Fig: Types of Coupling

 As long as a simple argument list is present, i.e, simple data are passed low

coupling or data coupling is exhibited.

 A variation of data coupling, called stamp coupling is found when a portion

of a data structure is passed via a module interface. This occurs between

modules b and a.

 Control coupling is very common in most software designs where a “control

flag” is passed between modules like d and e.

•

90

 High coupling occurs when a number of modules reference a global data area

and is called Common coupling like Modules c, g, and k each access a data

item in a global data area.

 The highest degree of coupling, content coupling, occurs when one module

makes use of data or control information maintained within the boundary of

another module.

3.4 TOP DOWN DESIGN

 Top-down design is a term used to describe how a complex problem is broken

down into modules.

 Those modules are then broken down into sub-modules.

 Each sub-module is then broken down further and further, until the sub-

modules do just one task and are simple enough to program.

 Instead of writing one big program, the program is split into self-contained

‘modules’ of code. Modules are sometimes called ‘procedures‘ or ‘functions’.

3.4.1 Advantages of Top down Design

(i) It helps get the job done more efficiently because modules of code can be

worked on at the same time by different programmers

(ii) It helps a team of programmers work more efficiently because easier modules

can be given to less experienced programmers while the harder ones can be given

to more experienced ones.

•

91

(iii) It helps program testing because it is easier to debug lots of smaller self-

contained modules than one big program.

(iv) It helps program readability because it is easier to follow what is going on in

smaller modules than a big program.

(v) It improves a company’s efficiency because self-contained modules can be

re-used.

(vi) It improves a Project Manager’s ability to monitor the progress of a program.

(vii) It is good for future program maintenance. If a program needs to be changed

for any reason, it may be possible simply to remove one module of code and

replace it with another.

3.4.2 Disadvantages of Top Down Design

i) The solution provides limited coverage in the first phases.

ii) A minimal percentage of user accounts are managed in the first phases.

iii) You might have to develop custom adapters at an early stage.

iv) The support and overall business will not realize the benefit of the solution as

rapidly.

v) The implementation cost is likely to be higher.

3.5 BOTTOM UP DESIGN

 In a bottom-up approach, the individual base elements of the system are first

specified in great detail.

•

92

 These elements are then linked together to form larger subsystems, which then

in turn are linked, until a complete top-level system is formed.

 This strategy often resembles a "seed" model, by which the beginnings are

small, but eventually grow in complexity and completeness.

3.5.1 Advantages of Bottom Up Design

(i) User and business awareness of the product. Benefits are realized in the early

phases.

(ii) You can replace many manual processes with early automation.

(iii) You can implement password management for a large number of users.

(iv) You do not have to develop custom adapters in the early phases.

(v) Your organization broadens identity management skills and understanding

during the first phase.

(vi) Tivoli Identity Manager is introduced to your business with less intrusion to

your operations.

3.5.2Disadvantages of Bottom Up Design

(i) The organizational structure you establish might have to be changed in a later

roll-out phase.

(ii) Because of the immediate changes to repository owners and the user population,

the roll-out will have a higher impact earlier and require greater cooperation.

•

93

(iii) This strategy is driven by the existing infrastructure instead of the business

processes.

•

94

MODULE 4

 The goal of coding is to implement the design in best possible way.

 While coding, program should not be constructed so that it easy to write

instead it should be understandable and readable.

 There are many different criteria for judging the program like readability, size

of the program, execution time, and required memory.

 Readability and understandability are the main objectives that help in

producing software that is more maintainable.

Programming Principles and Guidelines

 The main task before a programmer is to write quality code with few bugs in

it.

 Good programming is a practice independent of target programming

language.

Common Coding Errors

 Software errors are reality that all programmers have to deal with.

 Though errors can occur in wide variety of ways, some types of errors are

found more commonly like:

•

95

(i) Memory leaks

 It is a situation where the memory is allocated to the program which

is not freed subsequently.

 This error is common failures which occur in languages that do not

have automatic garbage collection.

 They have little impact on small programs but drastic for long

programs.

 A software program with memory leaks keeps consuming memory,

till at some point of time the program may come to an exceptional

halt because of lack of free memory.

(ii) Freeing an Already Freed Resource

 In programs, resources are first allocated and then freed.

 This error occurs when the programmer tries to free the already freed

resource.

 The impact of this error is more severe if we have some malloc

statement between the two free statements, there is a chance that the

first freed location is now allocated to the new variable and the

subsequent free will deallocate it.

(iii) NULL Dereferencing

•

96

 It occurs when we try to access the contents of location that points

to NULL.

 It is a common occurring error which can bring software system

down.

 It is also difficult to detect NULL dereferencing as it may occur only

in some paths and under certain situations.

(iv) Lack of Unique Addresses

 Aliasing creates problems and among them is violation of unique

addresses when we expect different addresses.

 For example, in string concatenation function, we expect source and

destination addresses to be different.

 If this is not the case, it can lead to runtime errors.\

(v) Synchronization errors

 These errors are hard to find as they don’t occur so often but when

occurs it causes serious damage to the system.

 There are different categories of synchronization errors and some of

them are as follows:

1. Deadlocks

2. Race conditions

3. Inconsistent synchronization

•

97

 Deadlock is a situation in which one or more threads mutually lock

each other.

 Race condition occurs when two threads try to access the same

resource and result of the execution depends on order of execution

of errors.

 Inconsistent synchronization is also common error representing

situation where there is a mix of locked and unlocked accesses to

some shared variables.

(vi) Array Index Out of Bounds

 Array index goes out of bounds, leading to exceptions.

 Array index values cannot be negative or should not exceed their

bounds.

(vii) Arithmetic Exceptions

 These include errors like divide by zero and floating point

exceptions.

 The result of these may vary from getting unexpected results to

termination of the program.

•

98

4.1 Some Programming Practices

(i) Control Constructs

 It is desirable to use a few standard control constructs rather than wide variety

of constructs, just because they are available in language.

(ii) Gotos

 Goto should be used sparingly and in disciplined manner. Only when the

alternative is using gotos is more complex should the gotos be used.

(iii) Information Hiding

 The access functions for the data structures should be made visible while

hiding the data structure behind these functions.

(iv) Nesting

 If nesting of if-then-else constructs becomes too deep, then the logic become

harder to understand. It is often difficult to which a particular else cause is

associated.

 For example, in the below case:

 if C1 then S1

 else if C2 then S2

•

99

 else if C3 then S3;

 If these are disjoint, the structure can be converted as:

 if C1 then S1

 if C2 then S2

 if C3 then S3

 This sequence of statements will produce same result but is much easier to

understand.

(v) Module size

 Programmer should carefully examine any function with too many statements

and large modules will not be functionally cohesive. The guideline for modularity

should be cohesion and coupling.

(vi) Module Interface

 A module with complex interface should be carefully examined. If the

interface is complex with more than 5 parameters should be examined and broken

into modules with simpler interface.

(vii) Side Effects

 When module is invoked, it creates side effects of modifying program state

beyond the modification of parameters in the interface.

(viii) Robustness

•

100

 A program might face exceptional conditions like overflow, and in such

situations programs should not crash or halt instead should produce some

meaningful message and exit successfully.

(ix) Switch case with default

 If there is no default case in switch statement, the behavior can be

unpredictable at development stage as it can result in bug like NULL dereferencing,

memory leak etc.

(x) Empty Catch Block

There are chances that if an exception is caught, there is no action defined and

some of the operations may not be performed. It is always good to use catch block

even if it is just an error message.

(xi) Trusted Data Sources

 Checks should be made before accessing the input data, particularly if it is

being provided by the user or is being obtained over the network. Some checks

should be done like parity checks, hashes, etc. to ensure the validity of incoming

data.

(xii) Give Importance to Exception

 Most programmers give less importance to the possible exceptional cases and

tend to work with main flow. Though main work is done in main path, it is the

exceptional paths that often cause software systems to fail.

•

101

4.2 Coding Standards

 Programmers spend more time reading the code than writing code.

 Prime importance is to write code in a manner that it is easy to read and

understand.

 Coding standards provide rules and regulations for some aspects of

programming in order to make code easier to read.

 Most organizations that develop software regularly develop coding standards.

 The major coding standards include the following:

(a) Naming Conventions

 Package names should be in lower case.

 Variable names should be nouns starting with lower case.

 Constant names should all be uppercase.

 Method names should be verbs starting with lowercase.

 Variables with a large scope should have long names and short

names with small scope.

 Private class variables should have the _ suffix.

(b) Files

There are conventions on how files should be named, and what files should

contain, such that reader can get some idea about file contents.

For Eg: Java source files should have extension .java

 Each file should contain class name same as the file name.

(c) Statements

•

102

 These guidelines are for the declaration and executable statements

in the source code.

 Not everyone organization will agree to this and develop their own

guidelines without restricting the flexibility of programmers.

 Some of the common statement guidelines includes the following:

(i) Variables should be initialized where declared.

(ii) Declare related variables together in a common statement.

(iii) Class variables should never be declared public.

(iv) Loop variables should be initialized immediately before the loop.

(v) Avoid use of break and continue in a loop.

(d) Commenting and Layout

 Comments are textual statements that are meant for the program

reader to understand the code.

 Comments should explain what the code is doing or why the code is

there.

 Providing comments for modules is most useful, as it forms unit of

testing, compiling, verification and modification.

 Comments for a module are known as prologue which describes the

functionality and purpose of the module.

 If the module is modified, then the prologue should also be

modified.

 Some guidelines of this are as follows:

(i) Single line comments for a block of code should be aligned

with the code.

•

103

(ii) There should be comments for all major variables

TESTING

 Testing is intended to show that a program does what it is intended to do and

to discover program defects before it is put into use.

 The main testing objectives includes:

a) Testing is a process of executing a program with intent of finding an

error.

b) A good test case is one that has a high probability of ending an

undiscovered error.

c) A successful test is one that uncovers all errors.

 The testing principle includes the following:

a) All tests should be traceable to customer requirement.

b) Test should be planned long before testing begins.

c) Exhaustive testing is not possible

d) To be most effective, testing should be conducted by an independent

third party.

4.3 Black Box Testing

 It is also known as Behavioral Testing

 It is a software testing method in which the internal structure/design/imple-

mentation of the item being tested is not known to the tester.

 These tests can be functional or non-functional, though usually functional.

http://softwaretestingfundamentals.com/software-testing-methods/

•

104

 This method is named so because the software program, in the eyes of the

tester, is like a black box; inside which one cannot see.

 This method attempts to find errors in the following categories:

a) Incorrect or missing functions

b) Interface errors

c) Errors in data structures or external database access

d) Behavior or performance errors

e) Initialization and termination errors

Fig: Black Box Testing

4.3.1 Techniques

 There are different techniques involved in black-box testing and some are as

follows:

(a) Equivalence class portioning

EXRCUTABLE PROGRAM

 INPUT DATA

 OUTPUT DATA

•

105

o The natural approach is to divide the input domain into a set of

equivalence classes, so that if the program works correctly for a value,

then it will work correctly for all the other values in that class.

o The equivalence class partitioning method tries to approximate this

ideal. An equivalence class is formed of the inputs for which the

behavior of the system is specified or expected to be similar.

o Each group of inputs for which the behavior is expected to be different

from others is considered a separate equivalence class.

o The rationale of forming equivalence classes like this is the assumption

that if the specifications require the same behavior for each element in

a class of values, then the program is likely to be constructed so that it

either succeeds or fails for each of the values in that class.

o One common approach for determining equivalence classes is that if

there is reason to believe that the entire range of an input will not be

treated in the same manner, then the range should be split into two or

more equivalence classes, each consisting of values for which the

behavior is expected to be similar.

o Another approach for forming equivalence classes is to consider any

special value for which the behavior could be different as an

equivalence class.

o Once equivalence classes are selected for each of the inputs, then the

issue is to select test cases suitably.

o One strategy is to select each test case covering as many valid

equivalence classes as it can, and one separate test case for each invalid

equivalence class.

•

106

o A somewhat better strategy which requires more test cases is to have a

test case cover at most one valid equivalence class for each input, and

have one separate test case for each invalid equivalence class.

o In the latter case, the number of test cases for valid equivalence classes

is equal to the largest number of equivalence classes for any input, plus

the total number of invalid equivalence classes.

(b) Boundary Value Analysis

o It has been observed that programs that work correctly for a set of

values in an equivalence class fail on some special values.

o These values often lie on the boundary of the equivalence class. Test

cases that have values on the boundaries of equivalence classes are

therefore likely to be “high-yield” test cases, and selecting such test

cases is the aim of boundary value analysis.

o In boundary value analysis, we choose an input for a test case from an

equivalence class, such that the input lies at the edge of the equivalence

classes.

o Boundary values for each equivalence class, including the equivalence

classes of the output, should be covered.

o Boundary value test cases are also called “extreme cases.”

o In case of ranges, for boundary value analysis it is useful to select the

boundary elements of the range and an invalid value just beyond the

two ends (for the two invalid equivalence classes).

o So, if the range is 0.0 < x < 1.0, then the test cases are 0.0, 1.0 (valid

inputs), and −0.1, and 1.1 (for invalid inputs).

•

107

(c) Pair ways testing

o Many of the defects in software generally involve one condition, that

is, some special value of one of the parameters. Such a defect is called

a single-mode fault.

o Single-mode faults can be detected by testing for different values of

different parameters.

o However, all faults are not single-mode and there are combinations of

inputs that reveal the presence of faults.

o These multimode faults can be revealed during testing by trying

different combinations of the parameter values—an approach called

combinatorial testing.

o Some research has suggested that most software faults are revealed on

some special single values or by interaction of a pair of values.

o Most faults tend to be either single-mode or double-mode.

o For testing for double-mode faults, we need not test the system with all

the combinations of parameter values, but need to test such that all

combinations of values for each pair of parameters are exercised. This

is called pairwise testing.

(d) State based Testing

o There are some systems that are essentially stateless in that for the same

inputs they always give the same outputs or exhibit the same behavior.

•

108

o There are, however, many systems whose behavior is state-based in that

for identical inputs they behave differently at different times and may

produce different outputs.

o The reason for different behavior is that the state of the system may be

different, so the behavior and outputs of the system depend not only on

the inputs provided, but also on the state of the system.

o The state of the system depends on the past inputs the system has

received, so the state represents the cumulative impact of all the past

inputs on the system.

o If the set of states of a system is manageable, a state model of the system

can be built.

o The state model shows what state transitions occur and what actions are

performed in a system in response to events.

o When a state model is built from the requirements of a system, we can

only include the states, transitions, and actions that are stated in the

requirements or can be inferred from them.

o If more information is available from the design specifications, then a

richer state model can be built.

o A state model for a system has four components:

a) States: Represent the impact of the past inputs to the system.

b) Transitions: Represent how the state of the system changes from

one state to another in response to some events.

c) Events: Inputs to the system.

d) Actions: The outputs for the events.

•

109

4.3.2 Advantages

 Tests are done from a user’s point of view and will help in exposing

discrepancies in the specifications.

 Tester need not know programming languages or how the software has been

implemented.

 Tests can be conducted by a body independent from the developers, allowing

for an objective perspective and the avoidance of developer-bias.

 Test cases can be designed as soon as the specifications are complete.

4.3.3 Disadvantages

 Only a small number of possible inputs can be tested and many program paths

will be left untested.

 Without clear specifications, which are the situation in many projects, test

cases will be difficult to design.

 Tests can be redundant if the software designer/developer has already run a

test case.

4.4 White Box Testing

 White box testing is concerned with testing the implementation of the

program.

 The intent of this testing is not to exercise all the different input or output

conditions but to exercise the different programming structures and data

structures used in the program.

 White-box testing is also called structural testing.

•

110

 To test the structure of a program, structural testing aims to achieve test cases

that will force the desired coverage of different structures.

 One approach to structural testing: control flow-based testing, which is most

commonly used in practice.

4.4.1 Control Flow based Testing

 Most common structure-based criteria are based on the control flow of the

program.

 In these criteria, the control flow graph of a program is considered and

coverage of various aspects of the graph is specified as criteria.

 Let the control flow graph (or simply flow graph) of a program P be G. A

node in this graph represents a block of statements that is always executed

together, i.e., whenever the first statement is executed, all other statements are

also executed.

 An edge (i, j) (from node i to node j) represents a possible transfer of control

after executing the last statement of the block represented by node i to the first

statement of the block represented by node j.

 A node corresponding to a block whose first statement is the start statement

of P is called the start node of G, and a node corresponding to a block whose

last statement is an exit statement is called an exit node.

 A path is a finite sequence of nodes (n1, n2, ..., nk), k > 1, such that there is

an edge (ni, ni+1) for all nodes ni in the sequence (except the last node nk).

 A complete path is a path whose first node is the start node and the last node

is an exit node.

•

111

 The simplest coverage criterion is statement coverage, which requires that

each statement of the program be executed at least once during testing.

 In other words, it requires that the paths executed during testing include all

the nodes in the graph. This is also called the all-nodes criterion.

 This coverage criterion is not very strong, and can leave errors undetected.

 A more general coverage criterion is branch coverage, which requires that

each edge in the control flow graph be traversed at least once during testing.

 In other words, branch coverage requires that each decision in the program be

evaluated to true and false values at least once during testing.

 Testing based on branch coverage is often called branch testing.

 The trouble with branch coverage comes if a decision has many conditions in

it.

 A more general coverage criterion is one that requires all possible paths in the

control flow graph be executed during testing.

 This is called the path coverage criterion or the all-paths criterion, and the

testing based on this criterion is often called path testing.

 The difficulty with this criterion is that programs that contain loops can have

an infinite number of possible paths.

4.5 Testing Strategic Issue

 Even the best strategy will fail if a series of overriding issues are not

addressed.

 A software testing strategy will succeed only when software testers:

•

112

(1) Specify product requirements in a quantifiable manner long before testing

commences

(2) State testing objectives explicitly

(3) Understand the users of the software and develop a profile for each user

category

(4) Develop a testing plan that emphasizes “rapid cycle testing,”

(5) Build “robust” software that is designed to test itself

(6) Use effective technical reviews as a filter prior to testing

(7) Conduct technical reviews to assess the test strategy and test cases

themselves

(8) Develop a continuous improvement approach for the testing process.

4.6 Unit Testing

 Once a programmer has written the code for a module, it has to be verified

before it is used by others.

 Testing remains the most common method of this verification and at the

programmer level the testing done for checking the code the programmer has

developed is called unit testing.

 Unit testing is like regular testing where programs are executed with some test

cases except that the focus is on testing smaller programs or modules which

are typically assigned to one programmer (or a pair) for coding.

 A unit may be a function or a small collection of functions for procedural

languages, or a class or a small collection of classes for object-oriented

languages.

•

113

 It suffices that during unit testing the tester, who is generally the programmer,

will execute the unit with a variety of test cases and study the actual behavior

of the units being tested for these test cases.

 Based on the behavior, the tester decides whether the unit is working correctly

or not.

 If the behavior is not as expected for some test case, then the programmer

finds the defect in the program (an activity called debugging), and fixes it.

 After removing the defect, the programmer will generally execute the test case

that caused the unit to fail again to ensure that the fixing has indeed made the

unit behave correctly.

 An issue with unit testing is that as the unit being tested is not a complete

system but just a part, it is not executable by itself.

 Furthermore, in its execution it may use other modules that have not been

developed yet.

 Due to this, unit testing often requires drivers or stubs to be written. Drivers

play the role of the “calling” module and are often responsible for getting the

test data, executing the unit with the test data, and then reporting the result.

 Stubs are essentially “dummy” modules that are used in place of the actual

module to facilitate unit testing.

4.7 Integration Testing

 Integration testing is a systematic technique for constructing the software

architecture while at the same time conducting tests to uncover errors

associated with interfacing.

•

114

 The objective is to take unit-tested components and build a program structure

that has been dictated by design.

 There is often a tendency to attempt non-incremental integration where all

components are combined in advance and the entire program is tested as a

whole.

 In Incremental integration the program is constructed and tested in small

increments, where errors are easier to isolate and correct; interfaces are more

likely to be tested completely; and a systematic test approach may be applied.

 A number of different incremental integration strategies are developed like:

(a) Top-Down Integration

 Modules are integrated by moving downward through the control

hierarchy, beginning with the main control module (main program).

 Modules subordinate (and ultimately subordinate) to the main

control module are incorporated into the structure in either a depth-

first or breadth-first manner.

 Depth-first integration integrates all components on a major control

path of the program structure.

 Breadth-first integration incorporates all components directly

subordinate at each level, moving across the structure horizontally.

(b) Bottom-Up Integration

 Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules (i.e., components at

the lowest levels in the program structure).

•

115

 Because components are integrated from the bottom up, the

functionality provided by components subordinate to a given level

is always available and the need for stubs is eliminated.

(c) Regression Testing

 Regression testing is the re-execution of some subset of tests that

have already been conducted to ensure that changes have not

propagated unintended side effects.

 Regression testing helps to ensure that changes (due to testing or for

other reasons) do not introduce unintended behavior or additional

errors.

 Regression testing may be conducted manually, by re-executing a

subset of all test cases or using automated capture/playback tools.

(d) Smoke Testing

 Smoke testing is an integration testing approach that is commonly

used when product software is developed.

 It is designed as a pacing mechanism for time-critical projects,

allowing the software team to assess the project on a frequent basis.

4.8 Validation Testing

 Validation testing begins at the culmination of integration testing, when

individual components have been exercised, the software is completely

assembled as a package, and interfacing errors have been uncovered and

corrected.

•

116

 Testing focuses on user-visible actions and user-recognizable output from the

system.

4.8.1 Validation Test Criteria

 Software validation is achieved through a series of tests that demonstrate

conformity with requirements.

 A test plan outlines the classes of tests to be conducted, and a test

procedure defines specific test cases that are designed to ensure that:

(a) Functional requirements are satisfied

(b) All behavioral characteristics are achieved,

(c) All content is accurate and properly presented,

(d) All performance requirements are attained,

(e) Documentation is correct,

(f) Usability and other requirements are met

 4.8.2 Configuration Review

 An important element of the validation process is a configuration review.

 The intent of the review is to ensure that all elements of the software

configuration have been properly developed, are cataloged, and have the

necessary detail to support activities

 4.8.3 Alpha and Beta Testing

 It is virtually impossible for a software developer to foresee how the

customer will really use a program.

•

117

 Instructions for use may be misinterpreted; strange combinations of data

may be used; output that seemed clear to the tester may be unintelligible

to a user in the field.

 Most software product builders use a process called alpha and beta testing

to uncover errors that only the end user seems able to find.

 The alpha test is conducted at the developer’s site by a representative group

of end users. The software is used in a natural setting with the developer

“looking over the shoulder” of the users and recording errors and usage

problems.

 The beta test is conducted at one or more end-user sites. Unlike alpha

testing, the developer generally is not present.

 Therefore, the beta test is a “live” application of the software in an

environment that cannot be controlled by the developer.

 The customer records all problems (real or imagined) that are encountered

during beta testing and reports these to the developer at regular intervals.

 A variation on beta testing, called customer acceptance testing, is

sometimes performed when custom software is delivered to a customer

under contract.

 The customer performs a series of specific tests in an attempt to uncover

errors before accepting the software from the developer.

4.9 System Testing

 Software is incorporated with other system elements (e.g., hardware, people,

information), and a series of system integration and validation tests are

conducted.

•

118

 These tests fall outside the scope of the software process and are not

conducted solely by software engineers.

 However, steps taken during software design and testing can greatly improve

the probability of successful software integration in the larger system.

4.9.1 Recovery Testing

 Recovery testing is a system test that forces the software to fail in a variety of

ways and verifies that recovery is properly performed.

 If recovery is automatic (performed by the system itself), re-initialization,

check-pointing mechanisms, data recovery, and restart are evaluated for

correctness.

 If recovery requires human intervention, the mean-time-to-repair (MTTR) is

evaluated to determine whether it is within acceptable limits.

4.9.2 Security Testing

 Security testing attempts to verify that protection mechanisms built into a

system will, in fact, protect it from improper penetration.

 Penetration spans a broad range of activities: hackers who attempt to penetrate

systems for sport, disgruntled employees who attempt to penetrate for

revenge, dishonest individuals who attempt to penetrate for illicit personal

gain.

4.9.3 Stress Testing

 Stress testing executes a system in a manner that demands resources in

abnormal quantity, frequency, or volume.

•

119

 A variation of stress testing is a technique called sensitivity testing.

 In some situations (the most common occur in mathematical algorithms), a

very small range of data contained within the bounds of valid data for a

program may cause extreme and even erroneous processing or profound

performance degradation.

4.9.4 Performance Testing

 Performance testing occurs throughout all steps in the testing process.

 Even at the unit level, the performance of an individual module may be

assessed as tests are conducted.

 However, it is not until all system elements are fully integrated that the true

performance of a system can be ascertained.

 Performance tests are often coupled with stress testing and usually require

both hardware and software instrumentation.

4.9.5 Deployment Testing

 Deployment testing, sometimes called configuration testing, exercises the

software in each environment in which it is to operate.

 In addition, deployment testing examines all installation procedures and

specialized installation software (e.g., “installers”) that will be used by

customers, and all documentation that will be used to introduce the software

to end users.

•

120

MODULE 5

5.1 MAINTENANCE

 Software maintenance is widely accepted part of SDLC now a days. It stands

for all the modifications and updates done after the delivery of software

product.

 There are number of reasons, why modifications are required, some of them

are briefly mentioned below:

a) Market Conditions - Policies, which changes over the time, such as

taxation and newly introduced constraints like, how to maintain

bookkeeping, may trigger need for modification.

b) Client Requirements - Over the time, customer may ask for new features

or functions in the software.

c) Host Modifications - If any of the hardware and/or platform (such as

operating system) of the target host changes, software changes are needed

to keep adaptability.

d) Organization Changes - If there is any business level change at client

end, such as reduction of organization strength, acquiring another

company, organization venturing into new business, need to modify in the

original software may arise.

•

121

5.1.2 Types of Maintenance

 In a software lifetime, type of maintenance may vary based on its nature.

 It may be just a routine maintenance tasks as some bug discovered by some

user or it may be a large event in itself based on maintenance size or nature.

 Following are some types of maintenance based on their characteristics:

 Corrective Maintenance - This includes modifications and updates done in

order to correct or fix problems, which are either discovered by user or

concluded by user error reports.

 Adaptive Maintenance - This includes modifications and updates applied to

keep the software product up-to date and tuned to the ever changing world of

technology and business environment.

 Perfective Maintenance - This includes modifications and updates done in

order to keep the software usable over long period of time. It includes new

features, new user requirements for refining the software and improve its

reliability and performance.

 Preventive Maintenance - This includes modifications and updates to

prevent future problems of the software. It aims to attend problems, which

are not significant at this moment but may cause serious issues in future.

5.1.3 Maintenance Activities

 IEEE provides a framework for sequential maintenance process activities.

 It can be used in iterative manner and can be extended so that customized

items and processes can be included.

•

122

Fig: Maintenance Activities

 These activities go hand-in-hand with each of the following phase:

a) Identification & Tracing - It involves activities pertaining to

identification of requirement of modification or maintenance. It is

generated by user or system may itself report via logs or error

messages.Here, the maintenance type is classified also.

b) Analysis - The modification is analyzed for its impact on the system

including safety and security implications. If probable impact is severe,

alternative solution is looked for. A set of required modifications is then

materialized into requirement specifications. The cost of

modification/maintenance is analyzed and estimation is concluded.

c) Design - New modules, which need to be replaced or modified, are

designed against requirement specifications set in the previous stage. Test

cases are created for validation and verification.

•

123

d) Implementation - The new modules are coded with the help of structured

design created in the design step.Every programmer is expected to do unit

testing in parallel.

e) System Testing - Integration testing is done among newly created

modules. Integration testing is also carried out between new modules and

the system. Finally the system is tested as a whole, following regressive

testing procedures.

f) Acceptance Testing - After testing the system internally, it is tested for

acceptance with the help of users. If at this state, user complaints some

issues they are addressed or noted to address in next iteration.

g) Delivery - After acceptance test, the system is deployed all over the

organization either by small update package or fresh installation of the

system. The final testing takes place at client end after the software is

delivered.Training facility is provided if required, in addition to the hard

copy of user manual.

h) Maintenance management - Configuration management is an essential

part of system maintenance. It is aided with version control tools to control

versions, semi-version or patch management.

5.2 RISK MANAGEMENT

 Risk analysis and management are a series of steps that help a software team

understand and manage uncertainty. Many problems can plague a software

project.

•

124

 A risk is a potential problem—it might happen, it might not. But, regardless

of the outcome, it’s a really good idea to identify it, assess its probability of

occurrence, estimate its impact, and establish a contingency plan should the

problem actually occur.

 Everyone involved in the software process—managers, software engineers,

and other stakeholders—participate in risk analysis and management.

 Recognizing what can go wrong is the first step, called “risk identification.

 Next, each risk is analyzed to determine the likelihood that it will occur and

the damage that it will do if it does occur.

 Once this information is established, risks are ranked, by probability and

impact.

 Finally, a plan is developed to manage those risks that have high probability

and high impact.

5.2.1 Reactive versus Proactive Risk Strategies

 At best, a reactive strategy monitors the project for likely risks.

 Resources are set aside to deal with them, should they become actual

problems.

 More commonly, the software team does nothing about risks until something

goes wrong. Then, the team flies into action in an attempt to correct the

problem rapidly.

 This is often called a fire-fighting mode. When this fails, “crisis management”

takes over and the project is in real jeopardy.

•

125

 A considerably more intelligent strategy for risk management is to be

proactive.

 A proactive strategy begins long before technical work is initiated. Potential

risks are identified, their probability and impact are assessed, and they are

ranked by importance.

 Then, the software team establishes a plan for managing risk. The primary

objective is to avoid risk, but because not all risks can be avoided, the team

works to develop a contingency plan that will enable it to respond in a

controlled and effective manner.

5.2.2 Software Risk

 Risk always involves two characteristics: uncertainty —the risk may or may

not happen; and loss —if the risk becomes a reality, unwanted consequences

or losses will occur.

 The different categories of risks are

(i) Project risks threaten the project plan. That is, if project risks become

real, it is likely that the project schedule will slip and that costs will

increase.

(ii) Technical risks threaten the quality and timeliness of the software to be

produced. If a technical risk becomes a reality, implementation may

become difficult or impossible.

(iii) Business risks threaten the viability of the software to be built and often

jeopardize the project or the product. Candidates for the top five

•

126

business risks are: (1) building an excellent product or system that no

one really wants (market risk), (2) building a product that no longer fits

into the overall business strategy for the company (strategic risk), (3)

building a product that the sales force doesn’t understand how to sell

(sales risk), (4) losing the support of senior management due to a

change in focus or a change in people (management risk), and (5) losing

budgetary or personnel commitment (budget risks).

 Another general categorization of risks includes:

(i) Known risks are those that can be uncovered after careful evaluation of

the project plan, the business and technical environment.

(ii) Predictable risks are extrapolated from past project experience.

(iii) Unpredictable risks are they can and do occur, but they are extremely

difficult to identify in advance.

5.2.3 Risk Identification

 Risk identification is a systematic attempt to specify threats to the project plan

(estimates, schedule, resource loading, etc.).

 By identifying known and predictable risks, the project manager takes a first

step toward avoiding them when possible and controlling them when

necessary.

 There are two distinct types of risks: generic risks and product-specific risks.

•

127

 Generic risks are a potential threat to every software project.

 Product-specific risks can be identified only by those with a clear

understanding of the technology, the people, and the environment

that is specific to the project at hand.

 One method for identifying risks is to create a risk item checklist.

 The checklist can be used for risk identification and focuses on some subset

of known and predictable risks in the following generic subcategories:

i. Product size—risks associated with the overall size of the software

to be built or modified.

ii. Business impact—risks associated with constraints imposed by

management or the marketplace.

iii. Customer characteristics—risks associated with the sophistication

of the customer and the developer's ability to communicate with the

customer in a timely manner.

iv. Process definition—risks associated with the degree to which the

software process has been defined and is followed by the

development organization.

v. Development environment—risks associated with the availability

and quality of the tools to be used to build the product.

• Technology to be built—risks associated with the complexity

of the system to be built and the "newness" of the technology

that is packaged by the system.

• Staff size and experience—risks associated with the overall

technical and project experience of the software engineers

who will do the work.

•

128

 The risk item checklist can be organized in different ways.

 Questions relevant to each of the topics can be answered for each software

project.

 The answers to these questions allow the planner to estimate the impact of

risk.

 A different risk item checklist format simply lists characteristics that are

relevant to each generic subcategory. Finally, a set of “risk components

and drivers" are listed along with their probability of occurrence. Drivers

for performance, support, cost, and schedule are discussed in answer to

later questions.

5.2.3.1 Assessing Overall Project Risk

 The following questions have derived from risk data obtained by surveying

experienced software project managers in different part of the world.

 The questions are ordered by their relative importance to the success of a

project.

1. Have top software and customer managers formally committed to support

the project?

2. Are end-users enthusiastically committed to the project and the

system/product to be built?

3. Are requirements fully understood by the software engineering team and

their customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end-users have realistic expectations?

6. Is project scope stable?

7. Does the software engineering team have the right mix of skills?

•

129

8. Are project requirements stable?

9. Does the project team have experience with the technology to be

implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project

and on the requirements for the system/product to be built?

 If any one of these questions is answered negatively, mitigation, monitoring,

and management steps should be instituted without fail.

 The degree to which the project is at risk is directly proportional to the number

of negative responses to these questions.

5.2.3.2 Risk Components and Drivers

 The project manager identifies the risk drivers that affect software risk

components—performance, cost, support, and schedule.

 The risk components are defined in the following manner:

a. Performance risk—the degree of uncertainty that the product will meet

its requirements and be fit for its intended use.

b. Cost risk—the degree of uncertainty that the project budget will be

maintained.

c. Support risk—the degree of uncertainty that the resultant software will

be easy to correct, adapt, and enhance.

d. Schedule risk—the degree of uncertainty that the project schedule will

be maintained and that the product will be delivered on time.

•

130

 The impact of each risk driver on the risk component is divided into one of

four impact categories—negligible, marginal, critical, or catastrophic.

5.2.4Risk Mitigation, Monitoring, and Management

 All of the risk analysis activities presented to this point have a single goal: to

assist the project team in developing a strategy for dealing with risk.

 An effective strategy must consider three issues:

 Risk avoidance

 Risk monitoring

 Risk management and contingency planning

 If a software team adopts a proactive approach to risk, avoidance is always

the best strategy.

 This is achieved by developing a plan for risk mitigation.

 For example, assume that high staff turnover is noted as a project risk, r1.

Based on past history and management intuition, the likelihood, l1, of high

turnover is estimated to be 0.70 (70 percent, rather high) and the impact, x1,

is projected at level 2. That is, high turnover will have a critical impact on

project cost and schedule.

 To mitigate this risk, project management must develop a strategy for

reducing turnover. Among the possible steps to be taken are:

o Meet with current staff to determine causes for turnover (e.g., poor

working conditions, low pay, and competitive job market).

o Mitigate those causes that are under our control before the project starts.

o Once the project commences, assume turnover will occur and develop

techniques to ensure continuity when people leave.

•

131

o Organize project teams so that information about each development

activity is widely dispersed.

o Define documentation standards and establish mechanisms to be sure

that documents are developed in a timely manner.

o Conduct peer reviews of all work (so that more than one person is "up

to speed”).

o Assign a backup staff member for every critical technologist.

o As the project proceeds, risk monitoring activities commence.

 The project manager monitors factors that may provide an indication of

whether the risk is becoming more or less likely.

 In the case of high staff turnover, the following factors can be monitored:

 General attitude of team members based on project pressures.

 The degree to which the team has jelled.

 Interpersonal relationships among team members.

 Potential problems with compensation and benefits.

 The availability of jobs within the company and outside it.

 In addition to monitoring these factors, the project manager should monitor

the effectiveness of risk mitigation steps.

 For example, a risk mitigation step noted here called for the definition of

documentation standards and mechanisms to be sure that documents are

developed in a timely manner.

 This is one mechanism for ensuring continuity, should a critical individual

leave the project.

•

132

 The project manager should monitor documents carefully to ensure that each

can stand on its own and that each imparts information that would be

necessary if a newcomer were forced to join the software team somewhere in

the middle of the project.

5.3 PROJECT MANAGEMENT CONCEPTS

 Project management involves the planning, monitoring, and control of people,

process, and events that occur during software development.

 Everyone manages, but the scope of each person's management activities

varies according his or her role in the project.

 Software needs to be managed because it is a complex, long duration

undertaking.

 Managers must focus on the fours P's to be successful (people, product,

process, and project).

 A project plan is a document that defines the four P's in such a way as to

ensure a cost effective, high quality software product.

 The only way to be sure that a project plan worked correctly is by observing

that a high quality product was delivered on time and under budget.

 People (recruiting, selection, performance management, training,

compensation, career development, organization, work design, team/culture

development)

 Product (product objectives, scope, alternative solutions, constraint

tradeoffs)

•

133

 Process (framework activities populated with tasks, milestones, work

products, and QA points)

 Project (planning, monitoring, controlling)

5.3.1The People

 The “people factor” is so important that the Software Engineering Institute

has developed a people management capabilitymaturity model (PM-CMM),

“to enhance the readiness of software organizations to undertake increasingly

complex applications by helping to attract, grow, motivate, deploy, and retain

the talent needed to improve their software development capability”

 The people management maturity model defines the following key practice

areas for software people: recruiting, selection, performance management,

training, compensation, career development, organization and work

design, and team/culture development.

 Organizations that achieve high levels of maturity in the people management

area have a higher likelihood of implementing effective software engineering

practices.

5.3.1.1 The Players

 The software process (and every software project) is populated by players who

can be categorized into one of five constituencies:

1.Senior managers who define the business issues that often have

significant influence on the project.

•

134

2. Project (technical) managers who must plan, motivate, organize, and

control the practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to

engineer a product or application.

4. Customers who specify the requirements for the software to be

engineered and other stakeholders who have a peripheral interest in the

outcome.

5. End-users who interact with the software once it is released for

production use.

 Every software project is populated by people who fall within this taxonomy.

To be effective, the project team must be organized in a way that maximizes

each person’s skills and abilities. And that’s the job of the team leader.

5.3.1.2 Team Leaders

 Project management is a people-intensive activity, and for this reason,

competent practitioners often make poor team leaders. MOI model of

leadership:

 Motivation. The ability to encourage (by “push or pull”) technical

people to produce to their best ability.

 Organization. The ability to mold existing processes (or invent new

ones) that will enable the initial concept to be translated into a final

product.

 Ideas or innovation. The ability to encourage people to create and

feel creative even when they must work within bounds established

for a particular software product or application.

•

135

 Another view of the characteristics that define an effective project manager

emphasizes four key traits:

 Problem solving. An effective software project manager can diagnose the

technical and organizational issues that are most relevant, systematically

structure a solution or properly motivate other practitioners to develop the

solution, apply lessons learned from past projects to new situations, and

remain flexible enough to change direction if initial attempts at problem

solution are fruitless.

 Managerial identity. A good project manager must take charge of the

project. She must have the confidence to assume control when necessary

and the assurance to allow good technical people to follow their instincts.

 Achievement. To optimize the productivity of a project team, a manager

must reward initiative and accomplishment and demonstrate through his

own actions that controlled risk taking will not be punished.

 Influence and team building. An effective project manager must be able

to “read” people; she must be able to understand verbal and nonverbal

signals and react to the needs of the people sending these signals. The

manager must remain under control in high-stress situations.

5.3.1.3 The Software Team

 The following options are available for applying human resources to a project

that will require n people working for k years:

1. n individuals are assigned to m different functional tasks, relatively little

combined work occurs; coordination is the responsibility of a software

manager who may have six other projects to be concerned with.

•

136

2. n individuals are assigned to m different functional tasks (m <n) so that

informal "teams" are established; an ad hoc team leader may be appointed;

coordination among teams is the responsibility of a software manager.

3. n individuals are organized into t teams; each team is assigned one or more

functional tasks; each team has a specific structure that is defined for all teams

working on a project; coordination is controlled by both the team and a

software project manager.

 The “best” team structure depends on the management style of your

organization, the number of people who will populate the team and their skill

levels, and the overall problem difficulty.

 Mantei suggests three generic team:

 Democratic decentralized (DD). This software engineering team has no

permanent leader. Rather, "task coordinators are appointed for short

durations and then replaced by others who may coordinate different tasks."

Decisions on problems and approach are made by group consensus.

Communication among team members is horizontal.

 Controlled decentralized (CD). This software engineering team has a

defined leader who coordinates specific tasks and secondary leaders that

have responsibility for subtasks. Problem solving remains a group activity,

but implementation of solutions is partitioned among subgroups by the

team leader. Communication among subgroups and individuals is

horizontal. Vertical communication along the control hierarchy also

occurs.

•

137

 Controlled Centralized (CC). Top-level problem solving and internal

team coordination are managed by a team leader. Communication between

the leader and team members is vertical.

5.3.2 The Product

 Before a project can be planned, product objectives and scope should be

established, alternative solutions should be considered, and technical and

management constraints should be identified.

 Without this information, it is impossible to define reasonable (and

accurate) estimates of the cost, an effective assessment of risk, a realistic

breakdown of project tasks, or a manageable project schedule that provides

a meaningful indication of progress.

 A software project manager is confronted with a dilemma at the very

beginning of a software engineering project.

 Quantitative estimates and an organized plan are required, but solid

information is unavailable.

 A detailed analysis of software requirements would provide necessary

information for estimates, but analysis often takes weeks or months to

complete. Worse, requirements may be fluid, changing regularly as the

project proceeds. Yet, a plan is needed "now!"

 Therefore, we must examine the product and the problem it is intended to

solve at the very beginning of the project.

 At a minimum, the scope of the product must be established and bounded.

5.3.2.1 Software Scope

•

138

 The first software project management activity is the determination of

software scope. Scope is defined by answering the following questions:

 Context. How does the software to be built fit into a larger system,

product, or business context and what constraints are imposed as a result

of the context?

 Information objectives. What customer-visible data objects are produced

as output from the software? What data objects are required for input?

 Function and performance. What function does the software perform to

transform input data into output? Are any special performance

characteristics to be addressed?

5.3.2.2 Problem Decomposition

 Problem decomposition, sometimes called partitioning or problem

elaboration, is an activity that sits at the core of software requirements

analysis.

 During the scoping activity no attempt is made to fully decompose the

problem. Rather, decomposition is applied in two major areas:

 (1) the functionality that must be delivered and

(2) the process that will be used to deliver it.

 Human beings tend to apply a divide and conquer strategy when they are

confronted with complex problems.

 Stated simply, a complex problem is partitioned into smaller problems that

are more manageable. This is the strategy that applies as project planning

begins.

•

139

5.3.3 The Process

 A software process provides the framework from which a comprehensive plan

for software development can be established.

 A small number of framework activities are applicable to all software projects,

regardless of their size or complexity.

 A number of different task sets—tasks, milestones, work products, and quality

assurance points—enable the framework activities to be adapted to the

characteristics of the software project and the requirements of the project

team.

 Finally, umbrella activities—such as software quality assurance, software

configuration management, and measurement—overlay the process model.

 Umbrella activities are independent of any one framework activity and occur

throughout the process.

 The generic phases that characterize the software process—definition,

development, and support—are applicable to all software

 . The problem is to select the process model that is appropriate for the software

to be engineered by a project team.

5.3.3.1 Melding the Product and the Process

 Project planning begins with the melding of the product and the process. Each

function to be engineered by the software team must pass through the set of

framework activities that have been defined for a software organization.

•

140

 Assume that the organization has adopted the following set of framework

activities :

a. Customer communication—tasks required to establish effective

requirements elicitation between developer and customer.

b. Planning—tasks required to define resources, timelines, and other

project related information.

c. Risk analysis—tasks required to assess both technical and management

risks.

d. Engineering—tasks required to build one or more representations of the

application.

e. Construction and release—tasks required to construct, test, install, and

provide user support (e.g., documentation and training).

f. Customer evaluation—tasks required to obtain customer feedback

based on evaluation of the software representations created during the

engineering activity and implemented during the construction activity.

 The team members who work on a product function will apply each of the

framework activities to it.

 In essence, a matrix similar to the one shown in figure below.

 Each major product function (the figure notes functions for the word-

processing software) is listed in the left-hand column.

 Framework activities are listed in the top row. Software engineering work

tasks (for each framework activity) would be entered in the following row.5

 The job of the project manager (and other team members) is to estimate

resource requirements for each matrix cell, start and end dates for the tasks

•

141

associated with each cell, and work products to be produced as a consequence

of each task.

Fig: Melding the Product and the Process

5.3.3.2 Process Decomposition

 A software team should have a significant degree of flexibility in choosing

the software engineering paradigm that is best for the project and the software

engineering tasks that populate the process model once it is chosen.

 A relatively small project that is similar to past efforts might be best

accomplished using the linear sequential approach.

 If very tight time constraints are imposed and the problem can be heavily

compartmentalized, the RAD model is probably the right option. If the

•

142

deadline is so tight that full functionality cannot reasonably be delivered, an

incremental strategy might be best.

 Similarly, projects with other characteristics (e.g., uncertain requirements,

breakthrough technology, difficult customers, significant reuse potential) will

lead to the selection of other process models.

 Process decomposition commences when the project manager asks, relatively

simple project might require the following work tasks for the customer

communication activity:

1. Develop list of clarification issues.

2. Meet with customer to address clarification issues.

3. Jointly develop a statement of scope.

4. Review the statement of scope with all concerned.

5. Modify the statement of scope as required.

 These events might occur over a period of less than 48 hours. They represent

a process decomposition that is appropriate for the small, relatively simple

project.

5.3.4 The Project

 We conduct planned and controlled software projects for one primary

reason—it is the only known way to manage complexity.

•

143

 In order to avoid project failure, a software project manager and the software

engineers who build the product must avoid a set of common warning signs,

understand the critical success factors that lead to good project management,

and develop a commonsense approach for planning, monitoring and

controlling the project.

 In order to manage a successful software project, we must understand what

can go wrong (so that problems can be avoided) and how to do it right.

 In an excellent paper on software projects, John Reel defines ten signs that

indicate that an information systems project is in jeopardy:

1. Software people don’t understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly

4. The chosen technology changes.

5. Business needs change [or are ill-defined].

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost [or was never properly obtained].

9. The project team lacks people with appropriate skills.

10. Managers [and practitioners] avoid best practices and lessons

learned.

 Reel suggests a five-part commonsense approach to software projects:

•

144

1. Start on the right foot. This is accomplished by working hard (very hard) to

understand the problem that is to be solved and then setting realistic objects and

expectations for everyone who will be involved in the project

2. Maintain momentum. Many projects get off to a good start and then slowly

disintegrate. To maintain momentum, the project manager must provide incentives

to keep turnover of personnel to an absolute minimum, the team should emphasize

quality in every task it performs, and senior management should do everything

possible to stay out of the team’s way.

3. Track progress. For a software project, progress is tracked as work products (e.g.,

specifications, source code, sets of test cases) are produced and approved (using

formal technical reviews) as part of a quality assurance activity. In addition, software

process and project measures can be collected and used to assess progress against

averages developed for the software development organization.

4. Make smart decisions. In essence, the decisions of the project manager and the

software team should be to “keep it simple.” Whenever possible, decide to use

commercial off-the-shelf software or existing software components, decide to avoid

custom interfaces when standard approaches are available, decide to identify and

then avoid obvious risks, and decide to allocate more time than you think is needed

to complex or risky tasks (you’ll need every minute).

5. Conduct a postmortem analysis. Establish a consistent mechanism for extracting

lessons learned for each project. Evaluate the planned and actual schedules, collect

and analyze software project metrics, get feedback from team members and

customers, and record findings in written form.

•

145

MODULE 6

6.1 PROJECT SCHEDULING AND TRACKING

 Eventhough technology has risen up so advanced, stillthe software

development faces late delivery.

 Although there are many reasons why software is delivered late, most can

betraced to one or more of the following root causes:

(i) An unrealistic deadline established by someone outside the software

teamand forced on managers and practitioners on the group.

(ii) Changing customer requirements that are not reflected in

schedulechanges.

(iii) An honest underestimate of the amount of effort and/or the number of

resourcesthat will be required to do the job.

(iv) Predictable and/or unpredictable risks that were not considered

whenthe project commenced.

(v) Technical difficulties that could not have been foreseen in advance.

(vi) Human difficulties that could not have been foreseen in advance.

(vii) Miscommunication among project staff that results in delays.

(viii) A failure by project management to recognize that the project is

fallingbehind schedule and a lack of action to correct the problem.

6.1.1 Basic Principles

A number of basic principles guide software project scheduling:

•

146

(i) Compartmentalization. The project must be compartmentalized into a

number of manageable activities and tasks. To accomplish

compartmentalization, both the product and the process are decomposed.

(ii) Interdependency. The interdependency of each compartmentalized

activity or task must be determined. Some tasks must occur in sequence

while others can occur in parallel. Other activities can occur

independently.

(iii) Time allocation. Each task to be scheduled must be allocated some

number of work units (e.g., person-days of effort). In addition, each task

must be assigned a start date and a completion date that are a function of

the interdependencies and whether work will be conducted on a full-time

or part-time basis.

(iv) Effort validation. Every project has a defined number of staff members.

As time allocation occurs, the project manager must ensure that no more

than the allocated number of people has been scheduled at any given time.

(v) Defined responsibilities. Every task that is scheduled should be assigned

to a specific team member.

(vi) Defined outcomes. Every task that is scheduled should have a defined

outcome. For software projects, the outcome is normally a work product

(e.g., the design of a module) or a part of a work product. Work products

are often combined in deliverables.

(vii) Defined milestones. Every task or group of tasks should be associated

with a project milestone. A milestone is accomplished when one or more

work products has been reviewed for quality and has been approved.

•

147

6.1.2 Relationship between People and Effort

 There is a common myth that is still believed by many managers who are

responsible for software development work: “If we fall behind schedule, we

can always add more programmers and catch up later in the project.”

 Unfortunately, adding people late in a project often has a disruptive effect on

the project, causing schedules to slip even further.

 The people who are added must learn the system, and the people who teach

them are the same people who were doing the work.

 While teaching, no work is done, and the project falls further behind.

 Over the years, empirical data and theoretical analysis have demonstrated that

project schedules are elastic. That is, it is possible to compress a desired

project completion date to some extent and it is also possible to extend a

completion date.

 The Putnam-Norden-Rayleigh (PNR) Curve 5 provides an indication of the

relationship between effort applied and delivery time for a software project.

 A version of the curve, representing project effort as a function of delivery

time, is shown in following figure.

 The curve indicates a minimum value t0 that indicates the least cost for

delivery (i.e., the delivery time that will result in the least effort expended).

 As we move left of t0(i.e., as we try to accelerate delivery), the curve rises

nonlinearly.

•

148

Fig: Relationship between People and Effort(PNR Graph)

 The number of delivered lines of code (source statements), L, is related to

effort and development time by the equation:

L= P3 E1/3t4/3

 where E is development effort in person-months, P is a

productivity parameter that reflects a variety of factors that leads to high-

quality software engineering work and t is the project duration in calendar

months.

 Rearranging this software equation, we can arrive at an expression for

development effort E:

E = L3/P3t4

6.1.3 Defining a Task Set for the Software Project

•

149

 Regardless of the process model that is chosen, the work that a software team

performs is achieved through a set of tasks that enable you to define, develop,

and ultimately support computer software.

 No single task set is appropriate for all projects. The set of tasks that would

be appropriate for a large, complex system would likely be perceived as

overkill for a small, relatively simple software product.

 Therefore, an effective software process should define a collection of task

sets, each designed to meet the needs of different types of projects.

 The task set will vary depending upon the project type and the degree of rigor

with which the software team decides to do its work.

 Although it is difficult to develop a comprehensive taxonomy of software

project types, most software organizations encounter the following projects:

1. Concept development projects that are initiated to explore some new

business concept or application of some new technology.

2. New application development projects that are undertaken as a

consequence of a specific customer request.

3. Application enhancement projects that occur when existing software

undergoes major modifications to function, performance, or interfaces that

are observable by the end user.

4. Application maintenance projects that correct, adapt, or extend existing

software in ways that may not be immediately obvious to the end user.

5. Reengineering projects that are undertaken with the intent of

rebuildingan existing (legacy) system in whole or in part.

6.1.3.1A Task Set Example

•

150

 Concept development projects are initiated when the potential for some new

technology must be explored.

 There is no certainty that the technology will be applicable,but a customer

(e.g., marketing) believes that potential benefit exists.

 Concept development projects are approached by applying the following

major tasks:

(a) Concept scoping determines the overall scope of the project.

(b) Preliminary concept planning establishes the organization’s ability to

undertake the work implied by the project scope.

(c) Technology risk assessment evaluates the risk associated with the

technology to be implemented as part of the project scope.

(d) Proof of concept demonstrates the viability of a new technology in the

software context.

(e) Concept implementation implements the concept representation in a manner

that can be reviewed by a customer and is used for“marketing” purposes when

a concept must be sold to other customers or management.

(f) Customer reaction to the concept solicits feedback on a new technology

concept and targets specific customer applications.

6.1.3.2 Refinement of Major Tasks

 The major tasks (i.e., software engineering actions) described in the preceding

section may be used to define a macroscopic schedule for a project.

 However,the macroscopic schedule must be refined to create a detailed project

schedule.

•

151

 Refinement begins by taking each major task and decomposing it into a set

ofsubtasks (with related work products and milestones).

6.2 SOFTWARE CONFIGURATION MANAGEMENT (SCM)

 Change is inevitable when computer software is built and can lead to

confusion when you and other members of a software team are working on a

project.

 Configuration management is the art of identifying,organizing, and

controlling modifications to the software being built by a programmingteam.

 The goal is to maximize productivity by minimizing mistakes.

 SCM activities are developed to (1) identify change, (2) control change,(3)

ensure that change is being properly implemented, and (4) report changes

toothers who may have an interest.

 There are four fundamental sources of change:

(i) New business or market conditions dictate changes in product

requirements or business rules.

(ii) New stakeholder needs demand modification of data produced by

informationsystems, functionality delivered by products, or services

deliveredby a computer-based system.

(iii) Reorganization or business growth/downsizing causes changes in

projectpriorities or software engineering team structure.

•

152

(iv) Budgetary or scheduling constraints cause a redefinition of the system

orproduct.

6.2.1 Elements of SCM

Four important elements that should exist when a configuration management

system is developed:

(a) Component elements —A set of tools coupled within a file

managementsystem (e.g., a database) that enables access to and management

of each software configuration item.

(b) Process elements —A collection of procedures and tasks that define

aneffective approach to change management (and related activities) for

allconstituencies involved in the management, engineering, and use of

computersoftware.

(c) Construction elements —A set of tools that automate the construction

ofsoftware by ensuring that the proper set of validated components (i.e.,

thecorrect version) have been assembled.

(d) Human elements —A set of tools and process features (encompassing

otherCM elements) used by the software team to implement effective SCM.

6.2.2 Baseline

 A baseline is a software configuration management concept that helps you to

control change without seriously impeding justifiable change.

 A specification or product that has been formally reviewed and agreed upon,

thatthereafter serves as the basis for further development, and that can be

changed onlythrough formal change control procedures.

•

153

 Before a software configuration item becomes a baseline, change may be

madequickly and informally.

 However, once a baseline is established, changes can be made, but a specific,

formal procedure must be applied to evaluate and verify each change.

6.3 USER INTERFACE DESIGN

 User interface design creates an effective communication medium between a

human and a computer.

 Following a set of interface design principles, design identifies interface

objects and actions and then creates a screen layout that forms the basis for a

user interface prototype.

 A software engineer designs the user interface by applying an iterative process

that draws on predefined design principles.

6.3.1 Rules of User Interface Design

 There are three basic goals in User Interface Design commonly known as

Golden Rules:

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent.

•

154

6.3.1.1 Place the User in Control

During a requirements-gathering session for a major new information system,

a key user was asked about the attributes of the window-oriented graphical interface.

(i) Define interaction modes in a way that does not force a user into

unnecessary or undesired actions. An interaction mode is the current

state of theinterface. For example, if spellcheck is selected in a word-

processor menu, thesoftware moves to a spell checking mode. The user

should be able to enter and exit the mode with little orno effort.

(ii) Provide for flexible interaction. Because different users have different

interaction preferences, choices should be provided. For example, software

might allow a user to interact via keyboard commands, mouse movement,

a digitizer pen, or voice recognition commands. But every action is not

amenable to every interaction mechanism.

(iii) Allow user interaction to be interruptible and undoable. Even when

involved in a sequence of actions, the user should be able to interrupt the

sequence to do something else (without losing the work that had been

done). The user should also be able to “undo” any action.

(iv) Streamline interaction as skill levels advance and allow the interaction

to be customized. Users often find that they perform the same sequence

of interactionsrepeatedly. It is worthwhile to design a “macro” mechanism

that enables anadvanced user to customize the interface to facilitate

interaction.

•

155

(v) Hide technical internals from the casual user. The user interface should

move the user into the virtual world of the application. The user should not

be aware of the operating system, file management functions, or other

arcane computing technology.

6.3.1.2 Reduce the User’s Memory Load

 The more a user has to remember, the more error-prone will be the interaction

with the system.

 It defines design principles that enable an interface to reduce the user’s

memory load:

(i) Reduce demand on short-term memory. When users are involved in

complex tasks, the demand on short-term memory can be significant. The

interface should be designed to reduce the requirement to remember past

actions and results. This can be accomplished by providing visual cues that

enable a user to recognize past actions, rather than having to recall them.

(ii) Establish meaningful defaults.The initial set of defaults should make

sense for the average user, but a user should be able to specify individual

preferences. However, a “reset” option should be available, enabling the

redefinition of original default values.

(iii) Define shortcuts that are intuitiveWhen mnemonics are used to

accomplish a system function (e.g., alt-P to invoke the print function), the

mnemonic should be tied to the action in a way that is easy to remember

(e.g., first letter of the task to be invoked).

•

156

(iv) The visual layout of the interface should be based on a real world

metaphor.For example, a bill payment system should use a check book

and check register metaphor to guide the user through the bill paying

process. This enables the user to rely on well-understood visual clues.

(v) Disclose information in a progressive fashion. The interface should be

organized hierarchically. An example, common to many word-processing

applications, is the underlining function. The function itself is one of a

number of functions under a text style menu. However, every underlining

capability is not listed. The user must pick underlining, then all underlining

options (e.g., single underline, double underline, dashed underline) are

presented.

6.3.1.3 Make the Interface Consistent

The interface should present and acquire information in a consistent fashion.

This implies that (1) all visual information is organized according to a design

standard that is maintained throughout all screen displays, (2) input mechanisms are

constrained to a limited set that are used consistently throughout the application, and

(3) mechanisms for navigating from task to task are consistently defined and

implemented. It defines a set of design principles that help make the interface

consistent:

(i) Allow the user to put the current task into a meaningful context.Many

interfaces implement complex layers of interactions with dozens of screen

images. It is important to provide indicators (e.g., window titles, graphical

icons, consistent color coding) that enable the user to know the context of

•

157

the work at hand. In addition, the user should be able to determine where

he has come from and what alternatives exist for a transition to a new task.

(ii) Maintain consistency across a family of applications.A set of

applications (or products) should all implement the same design rules so

that consistency is maintained for all interaction.

(iii) If past interactive models have created user expectations, do not make

changes unless there is a compelling reason to do so. Once a

particularinteractive sequence has become a de facto standard (e.g., the use

of alt-S tosave a file), the user expects this in every application he

encounters. A change(e.g., using alt-S to invoke scaling) will cause

confusion.

6.4 CASE Tools

 Computer-aided software engineering (CASE) tools assist software

engineering managers and practitioners in every activity associated with the

software process.

 They automate project management activities, manage all work products

produced throughout the process, and assist engineers in their analysis, design,

coding and test work.

 CASE tools can be integrated within a sophisticated environment.

 Software engineers now recognize that they need more and varied tools along

with an organized and efficient workshop in which to place the tools.

•

158

 The workshop for software engineering has been called an integrated project

support environment and the tools that fill the workshopare collectively called

computer-aided software engineering.

 CASE provides the software engineer with the ability to automate manual

activities and to improve engineering insight.

6.4.1 Building Blocks of CASE

 Computer aided software engineering can be as simple as a single tool that

supports a specific software engineering activity or as complex as a complete

"environment" that encompasses tools, a database, people, hardware, a

network, operating systems, standards, and many other components.

 The building blocks for CASE are illustrated in the following figure:

Fig: Building blocks of CASE

 Rather, successful environments for software engineering are built on an

environment architecture that encompasses appropriate hardware and systems

software.

•

159

 In addition, the environment architecture must consider the human work

patterns that are applied during the software engineering process.

 A set of portability services provides a bridge between CASE tools and their

integration framework and the environment architecture.

 The integration framework is a collection of specialized programs that enables

individual CASE tools to communicate with one another, to create a project

database, and to exhibit the same look and feel to the end-user (the software

engineer).

 Portability services allow CASE tools and their integration framework to

migrate across different hardware platforms and operating systems without

significant adaptive maintenance.

6.4.2 Taxonomy of CASE Tools

 CASE tools can be classified by function, by their role as instruments for

managers or technical people, by their use in the various steps of the software

engineering process, by the environment architecture (hardwareand software)

that supports them, or even by their origin or cost.

 The taxonomy presented here uses function as a primary criterion.

(i) Business process engineering tools. The primary objective for tools in

this category is to represent business data objects, their relationships, and

how these data objects flow between different business areas within a

company.

(ii) Process modeling and management tools. Process modeling tools (also

called process technology tools) are used to represent the key elements of

•

160

a process so that it can be better understood. Such tools can also provide

links to process descriptions that help those involved in the process to

understand the work tasks that are required to perform it. Process

management tools provide links to other tools that provide support to

defined process activities.

(iii) Project planning tools. Tools in this category focus on two primary areas:

software project effort and cost estimation and project scheduling.

Estimation tools compute estimated effort, project duration, and

recommended number of people for a project.

(iv) Risk analysis tools. Identifying potential risks and developing a plan to

mitigate, monitor, and manage them is of paramount importance in large

projects. Risk analysis tools enable a project manager to build a risk table

by providing detailed guidance in the identification and analysis of risks.

(v) Project management tools. The project schedule and project plan must

be tracked and monitored on a continuing basis. In addition, a manager

should use tools to collect metrics that will ultimately provide an indication

of software product quality.

(vi) Requirements tracing tools. When large systems are developed, things

"fall into the cracks." That is, the delivered system does not fully meet

customer specified requirements. The objective of requirements tracing

tools is to provide a systematic approach to the isolation of requirements,

beginning with the customer request for proposal or specification.

(vii) Metrics and management tools. Software metrics improve a manager's

ability to control and coordinate the software engineering process and a

practitioner's ability to improve the quality of the software that is produced.

•

161

Management-oriented tools capture project specific metrics (e.g.,

LOC/person-month, defects per function point) that provide an overall

indication of productivity or quality.

(viii) Documentation tools. Document production and desktop publishing tools

support nearly every aspect of software engineering and represent a

substantial "leverage" opportunity for all software developers. Most

software development organizations spend a substantial amount of time

developing documents, and in many cases the documentation process itself

is quite inefficient. Documentation tools provide an important opportunity

to improve productivity.

(ix) System software tools. CASE is a workstation technology. Therefore, the

CASE environment must accommodate high-quality network system

software, object management services, distributed component support,

electronic mail, bulletin boards, and other communication capabilities.

(x) Quality assurance tools. The majority of CASE tools that claim to focus

on quality assurance are actually metrics tools that audit source code to

determine compliance with language standards. Other tools extract

technical metrics in an effort to project the quality of the software that is

being built.

(xi) Database management tools. Database management software serves as a

foundation for the establishment of a CASE database (repository) that we

have called the project database. Database management tools for CASE

are evolving from relational database management systems to object

oriented database management systems.

•

162

(xii) Software configuration management tools. Software configuration

management lies at the kernel of every CASE environment. Tools can

assist in all five major SCM tasks—identification, version control,

change control, auditing, and status accounting. The CASE database

provides a mechanism for identifying each configuration item and relating

it to other items; the change control process can be implemented with the

aid of specialized tools; easy access to individual configuration items

facilitates the auditing process; and CASE communication tools can

greatly improve status accounting (reporting information about changes to

all who need to know).

(xiii) Analysis and design tools. Analysis and design tools enable a software

engineer to create models of the system to be built. The models contain a

representation of data, function, and behavior (at the analysis level) and

characterizations of data, architectural, component-level, and interface

design .

(xiv) PRO/SIM tools. PRO/SIM (prototyping and simulation) tools provide the

software engineer with the ability to predict the behavior of a real-time

system prior to the time that it is built.

(xv) Interface design and development tools. Interface design and

development tools are actually a tool kit of software components (classes)

such as menus, buttons, window structures, icons, scrolling mechanisms,

device drivers, and so forth.

(xvi) Prototyping tools. A variety of different prototyping tools can be used.

Screen painters enable a software engineer to define screen layout rapidly

for interactiveapplications. More sophisticated CASE prototyping tools

•

163

enable the creation of a datadesign, coupled with both screen and report

layouts.

(xvii) Programming tools. The programming tools category encompasses the

compilers, editors, and debuggers that are available to support most

conventional programming languages. In addition, object-oriented

programming environments, fourth generation languages, graphical

programming environments, application generators, and database query

languages also reside within this category.

(xviii) Web development tools. The activities associated with Web engineering

are supported by a variety of tools for WebApp development. These

include tools that assist in the generation of text, graphics, forms, scripts,

applets, and other elements of a Web page.

(xix) Integration and testing tools. In their directory of software testing tools,

Software Quality Engineering defines the following testing tools

categories:

• Data acquisition—tools that acquire data to be used during testing.

• Static measurement—tools that analyze source code without executing

test cases.

• Dynamic measurement—tools that analyze source code during

execution.

• Simulation—tools that simulate function of hardware or other

externals.

• Test management—tools that assist in the planning, development, and

control of testing.

•

164

• Cross-functional tools—tools that cross the bounds of the preceding

categories.

(xx) Static analysis tools. Static testing tools assist the software engineer in

deriving test cases. Three different types of static testing tools are used in

the industry: code based testing tools, specialized testing languages, and

requirements-based testing tools. Code-based testing toolsaccept source

code (or PDL) as input and perform a number of analyses that result in the

generation of test cases.

(xxi) Dynamic analysis tools. Dynamic testing tools interact with an executing

program, checking path coverage, testing assertions about the value of

specific variables, and otherwise instrumenting the execution flow of the

program.

(xxii) Test management tools. Test management tools are used to control and

coordinate software testing for each of the major testing steps. Tools in this

category manage and coordinate regression testing, perform comparisons

that ascertain differences between actual and expected output.

(xxiii) Client/server testing tools. The c/s environment demands specialized

testing tools that exercise the graphical user interface and the network

communications requirements for client and server.

(xxiv) Reengineering tools. Tools for legacy software address a set of

maintenance activities that currently absorb a significant percentage of all

software-related effort. The reengineering tools category can be

subdivided into the following functions:

•

165

 Reverse engineering to specification tools take source code as input

and generate graphical structured analysis and design models,

where-used lists, and other design information.

 Code restructuring and analysis tools analyze program syntax,

generate a control flow graph, and automatically generate a

structured program.

 On-line system reengineering tools are used to modify on-line

database systems

•

166

CONTENT BEYOND SYLLABUS

Top 10 Testing Automation Tools for Software Testing

1. Selenium

Selenium is a testing framework to perform web application testing across various

browsers and platforms like Windows, Mac, and Linux. Selenium helps the testers

to write tests in various programming languages like Java, PHP, C#, Python,

Groovy, Ruby, and Perl. It offers record and playback features to write tests without

learning Selenium IDE.

Selenium proudly supports some of the largest, yet well-known browser

vendors who make sure they have Selenium as a native part of their browser.

Selenium is undoubtedly the base for most of the other software testing tools in

general.

2. TestingWhiz

TestingWhiz is a test automation tool with the code-less scripting by Cygnet

Infotech, a CMMi Level 3 IT solutions provider. TestingWhiz tool’s Enterprise

edition offers a complete package of various automated testing solutions like web

testing, software testing, database testing, API testing, mobile app testing, regression

test suite maintenance, optimization, and automation, and cross-browser testing.

TestingWhiz offers various important features like:

 Keyword-driven, data-driven testing, and distributed testing

 Browser Extension Testing

 Object Eye Internal Recorder

 SMTP Integration

 Integration with bug tracking tools like Jira, Mantis, TFS and FogBugz

 Integration with test management tools like HP Quality Center, Zephyr,

TestRail, and Microsoft VSTS

 Centralized Object Repository

 Version Control System Integration

 Customized Recording Rule

https://www.testing-whiz.com/blog/comparing-top-10-cross-browser-testing-tools
https://www.testing-whiz.com/blog/comparing-top-10-cross-browser-testing-tools
https://www.cygnet-infotech.com/
https://www.cygnet-infotech.com/
https://dzone.com/articles/12-great-web-service-testing-tools

•

167

3. HPE Unified Functional Testing (HP – UFT formerly QTP)

HP QuickTest Professional was renamed to HPE Unified Functional Testing. HPE

UFT offers testing automation for functional and regression testing for software

applications.

Visual Basic Scripting Edition scripting language is used by this tool to register the

test processes and operates the various objects and controls in testing the

applications.

QTP offers various features like:

 Integration with Mercury Business Process Testing and Mercury Quality

Center

 Unique Smart Object Recognition

 Error handling mechanism

 Creation of parameters for objects, checkpoints, and data-driven tables

 Automated documentation

4. TestComplete

TestComplete is a functional testing platform that offers various solutions to

automate testing for desktop, web, and mobile applications by SmartBear Software.

TestComplete offers the following features:

 GUI testing

 Scripting Language Support – JavaScript, Python, VBScript, JScript,

DelphiScript, C++Script & C#Script

 Test visualizer

 Scripted testing

 Test recording and playback

5. Ranorex

Ranorex Studio offers various testing automation tools that cover testing all desktop,

web, and mobile applications.

Ranorex offers the following features:

 GUI recognition

https://smartbear.com/

•

168

 Reusable test codes

 Bug detection

 Integration with various tools

 Record and playback

6. Sahi

Sahi is a testing automation tool to automate web applications testing. The open-

source Sahi is written in Java and JavaScript programming languages.

Sahi provides the following features:

 Performs multi-browser testing

 Supports ExtJS, ZK, Dojo, YUI, etc. frameworks

 Record and playback on the browser testing

7. Watir

Watir is an open-source testing tool made up of Ruby libraries to automate web

application testing. It is pronounced as “water.”

Watir offers the following features:

 Tests any language-based web application

 Cross-browser testing

 Compatible with business-driven development tools like RSpec, Cucumber,

and Test/Unit

 Tests web page’s buttons, forms, links, and their responses

8. Tosca Testsuite

Tosca Testsuite by Tricentis uses model-based test automation to automate software

testing.

Tosca Testsuite comes with the following capabilities:

 Plan and design test case

 Test data provisioning

 Service virtualization network

 Tests mobile apps

 Integration management

https://dzone.com/articles/top-12-challenges-of-web-application-testing-the-d

•

169

 Risk coverage

9. Telerik TestStudio

Telerik TestStudio offers one solution to automate desktop, web, and mobile

application testing including UI, load, and performance testing.

Telerik TestStudio offers various compatibilities like:

 Support of programming languages like HTML, AJAX, ASP.NET,

JavaScript, Silverlight, WPF, and MVC

 Integration with Visual Basic Studio 2010 and 2012

 Record and playback

 Cross-browser testing

 Manual testing

 Integration with bug tracking tools

10. Katalon Studio

Katalon Studio is a free automation testing solution developed by Katalon LLC. The

software is built on top of the open-source automation frameworks Selenium,

Appium with a specialized IDE interface for API, web and mobile testing. This tool

includes a full package of powerful features that help overcome common challenges

in web UI test automation.

Katalon Studio consists of the following features:

 Built-in object repository, XPath, object re-identification

 Supports Java/Groovy scripting languages

 Built-in support for Image-based testing

 Support Continuous Integration tools like Jenkins & TeamCity

 Supports Duel-editor Interface

 Customizable execution workflow

